These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34822858)

  • 21. Air quality implications of the Deepwater Horizon oil spill.
    Middlebrook AM; Murphy DM; Ahmadov R; Atlas EL; Bahreini R; Blake DR; Brioude J; de Gouw JA; Fehsenfeld FC; Frost GJ; Holloway JS; Lack DA; Langridge JM; Lueb RA; McKeen SA; Meagher JF; Meinardi S; Neuman JA; Nowak JB; Parrish DD; Peischl J; Perring AE; Pollack IB; Roberts JM; Ryerson TB; Schwarz JP; Spackman JR; Warneke C; Ravishankara AR
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20280-5. PubMed ID: 22205764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport.
    Zhou L; Baker KR; Napelenok SL; Pouliot G; Elleman R; O'Neill SM; Urbanski SP; Wong DC
    Sci Total Environ; 2018 Jun; 627():523-533. PubMed ID: 29426175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In-situ burning of oil in coastal marshes. 2. Oil spill cleanup efficiency as a function of oil type, marsh type, and water depth.
    Lin Q; Mendelssohn IA; Carney K; Miles SM; Bryner NP; Walton WD
    Environ Sci Technol; 2005 Mar; 39(6):1855-60. PubMed ID: 15819247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oil Spill Field Trial at Sea: Measurements of Benzene Exposure.
    Gjesteland I; Hollund BE; Kirkeleit J; Daling P; Bråtveit M
    Ann Work Expo Health; 2017 Jul; 61(6):692-699. PubMed ID: 28595265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns.
    Aurell J; Gullett BK
    Environ Sci Technol; 2010 Dec; 44(24):9431-7. PubMed ID: 21073185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative toxicity assessment of in situ burn residues to initial and dispersed heavy fuel oil using zebrafish embryos as test organisms.
    Johann S; Goßen M; Mueller L; Selja V; Gustavson K; Fritt-Rasmussen J; Wegeberg S; Ciesielski TM; Jenssen BM; Hollert H; Seiler TB
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16198-16213. PubMed ID: 33269444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NO
    Allen C; Carrico CM; Gomez SL; Andersen PC; Turnipseed AA; Williford CJ; Birks JW; Salisbury D; Carrion R; Gates D; Macias F; Rahn T; Aiken AC; Dubey MK
    J Air Waste Manag Assoc; 2018 Nov; 68(11):1175-1189. PubMed ID: 29889623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From fire whirls to blue whirls and combustion with reduced pollution.
    Xiao H; Gollner MJ; Oran ES
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9457-62. PubMed ID: 27493219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersion modeling of particulate matter from the in-situ burning of spilled oil in the northwest Arctic area of Canada.
    Wang Z; An C; Lee K; Owens E; Boufadel M; Feng Q
    J Environ Manage; 2022 Jan; 301():113913. PubMed ID: 34731942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emissions of soot, PAHs, ultrafine particles, NO
    Andersen C; Omelekhina Y; Rasmussen BB; Nygaard Bennekov M; Skov SN; Køcks M; Wang K; Strandberg B; Mattsson F; Bilde M; Glasius M; Pagels J; Wierzbicka A
    Indoor Air; 2021 Nov; 31(6):2033-2048. PubMed ID: 34297865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of atmospheric emissions due to switching from fuel oil to natural gas at a power plant in a critical area in Central Mexico.
    Sosa E R; Vega E; Wellens A; Jaimes M; Fuentes G G; Granados H E; Alarcón J AL; Torres B MDC; Sánchez A P; Rosas A S; Mateos D E
    J Air Waste Manag Assoc; 2020 Oct; 70(10):1043-1059. PubMed ID: 32845797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-combustion of coal processing waste, oil refining waste and municipal solid waste: Mechanism, characteristics, emissions.
    Glushkov DO; Paushkina KK; Shabardin DP
    Chemosphere; 2020 Feb; 240():124892. PubMed ID: 31546192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.
    Valavanidis A; Iliopoulos N; Gotsis G; Fiotakis K
    J Hazard Mater; 2008 Aug; 156(1-3):277-84. PubMed ID: 18249066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water.
    van Gelderen L; Fritt-Rasmussen J; Jomaas G
    Mar Pollut Bull; 2017 Feb; 115(1-2):345-351. PubMed ID: 28003056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mutagenicity of a Prudhoe Bay crude oil and its residues from an experimental in situ burn.
    Sheppard EP; Wells RA; Georghiou PE
    Environ Res; 1983 Apr; 30(2):427-41. PubMed ID: 6339232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fate of hopane biomarkers during in-situ burning of crude oil - A laboratory-scale study.
    John GF; Han Y; Clement TP
    Mar Pollut Bull; 2018 Aug; 133():756-761. PubMed ID: 30041373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oil-material fractionation in Gulf deep water horizontal intrusion layer: Field data analysis with chemodynamic fate model for Macondo 252 oil spill.
    Melvin AT; Thibodeaux LJ; Parsons AR; Overton E; Valsaraj KT; Nandakumar K
    Mar Pollut Bull; 2016 Apr; 105(1):110-9. PubMed ID: 26947926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Situ Burning of Oil Spills.
    Evans DD; Mulholland GW; Baum HR; Walton WD; McGrattan KB
    J Res Natl Inst Stand Technol; 2001; 106(1):231-78. PubMed ID: 27500022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced combustion mechanism for C
    Damodara V; Chen DH; Lou HH; Rasel KM; Richmond P; Wang A; Li X
    J Air Waste Manag Assoc; 2017 May; 67(5):599-612. PubMed ID: 27996695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.