These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34822895)

  • 1. Relevance of the microbial community to Sb and As biogeochemical cycling in natural wetlands.
    Deng J; Xiao T; Fan W; Ning Z; Xiao E
    Sci Total Environ; 2022 Apr; 818():151826. PubMed ID: 34822895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond.
    Xiao E; Krumins V; Tang S; Xiao T; Ning Z; Lan X; Sun W
    Environ Pollut; 2016 Aug; 215():141-153. PubMed ID: 27182975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients.
    Sun X; Li B; Han F; Xiao E; Xiao T; Sun W
    Microb Ecol; 2019 Oct; 78(3):589-602. PubMed ID: 30725170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.
    Warnken J; Ohlsson R; Welsh DT; Teasdale PR; Chelsky A; Bennett WW
    Chemosphere; 2017 Aug; 180():388-395. PubMed ID: 28419952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river.
    Xu R; Sun X; Han F; Li B; Xiao E; Xiao T; Yang Z; Sun W
    Sci Total Environ; 2020 Apr; 713():136451. PubMed ID: 32019010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition.
    Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW
    Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.
    Xiao E; Krumins V; Xiao T; Dong Y; Tang S; Ning Z; Huang Z; Sun W
    Environ Pollut; 2017 Feb; 221():244-255. PubMed ID: 27979681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial antimonate reduction and removal potentials in river sediments.
    Yang Z; Hosokawa H; Kuroda M; Inoue D; Ike M
    Chemosphere; 2021 Mar; 266():129192. PubMed ID: 33310524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination.
    Li B; Xu R; Sun X; Han F; Xiao E; Chen L; Qiu L; Sun W
    Chemosphere; 2021 Jan; 263():128227. PubMed ID: 33297183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions.
    Sun W; Xiao E; Xiao T; Krumins V; Wang Q; Häggblom M; Dong Y; Tang S; Hu M; Li B; Xia B; Liu W
    Environ Sci Technol; 2017 Aug; 51(16):9165-9175. PubMed ID: 28700218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions.
    Sun X; Kong T; Xu R; Li B; Sun W
    Environ Pollut; 2020 May; 260():114052. PubMed ID: 32041010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling.
    Li Y; Zhang M; Xu R; Lin H; Sun X; Xu F; Gao P; Kong T; Xiao E; Yang N; Sun W
    Environ Int; 2021 Aug; 153():106522. PubMed ID: 33812041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective pressure of arsenic and antimony co-contamination on microbial community in alkaline sediments.
    Zhang M; Xiong Y; Sun H; Xiao T; Xiao E; Sun X; Li B; Sun W
    J Hazard Mater; 2024 Feb; 464():132948. PubMed ID: 37984136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system.
    Johnston SG; Bennett WW; Doriean N; Hockmann K; Karimian N; Burton ED
    Sci Total Environ; 2020 Mar; 710():136354. PubMed ID: 32050372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the antimony fractions and indigenous microbiota in aerobic and anaerobic rice paddies.
    Kong T; Lin H; Xiao E; Xiao T; Gao P; Li B; Xu F; Qiu L; Wang X; Sun X; Sun W
    Sci Total Environ; 2021 Jun; 771():145408. PubMed ID: 33736169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of antimony and arsenic behaviour at the river-lake junction in the middle of the Yangtze River Basin.
    Liu H; Zeng W; Lai Z; He M; Lin C; Ouyang W; Liu X
    J Environ Sci (China); 2024 Feb; 136():189-200. PubMed ID: 37923429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France.
    Resongles E; Casiot C; Freydier R; Dezileau L; Viers J; Elbaz-Poulichet F
    Sci Total Environ; 2014 May; 481():509-21. PubMed ID: 24631614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The composition and differences of antimony isotopic in sediments affected by the world's largest antimony deposit zone.
    Liu H; Sun G; He M; Feng X; Lin C; Ouyang W; Liu X
    Water Res; 2024 May; 254():121427. PubMed ID: 38467095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vegetation type impacts microbial interaction with antimony contaminants in a mining-contaminated soil environment.
    Sun X; Li B; Han F; Xiao E; Wang Q; Xiao T; Sun W
    Environ Pollut; 2019 Sep; 252(Pt B):1872-1881. PubMed ID: 31374407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Historical accumulation of potentially toxic trace elements resulting from mining activities in estuarine salt marshes sediments of the Asturias coastline (northern Spain).
    Garcia-Ordiales E; Cienfuegos P; Roqueñí N; Covelli S; Flor-Blanco G; Fontolan G; Loredo J
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3115-3128. PubMed ID: 29058258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.