BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 34823002)

  • 1. Stromal disruption facilitating invasion of a 'nano-arsenal' into the solid tumor.
    Fu Y; Saraswat AL; Monpara J; Patel K
    Drug Discov Today; 2022 Apr; 27(4):1132-1141. PubMed ID: 34823002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor microenvironment and nanotherapeutics: intruding the tumor fort.
    Ravi Kiran AVVV; Kusuma Kumari G; Krishnamurthy PT; Khaydarov RR
    Biomater Sci; 2021 Nov; 9(23):7667-7704. PubMed ID: 34673853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine.
    Tian Y; Cheng T; Sun F; Zhou Y; Yuan C; Guo Z; Wang Z
    Adv Colloid Interface Sci; 2024 Apr; 326():103124. PubMed ID: 38461766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site.
    Gouarderes S; Mingotaud AF; Vicendo P; Gibot L
    Expert Opin Drug Deliv; 2020 Dec; 17(12):1703-1726. PubMed ID: 32838565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment.
    Zhang Y; Ho SH; Li B; Nie G; Li S
    Med Res Rev; 2020 May; 40(3):1084-1102. PubMed ID: 31709590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment.
    Tanaka HY; Kano MR
    Cancer Sci; 2018 Jul; 109(7):2085-2092. PubMed ID: 29737600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.
    Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC
    Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor.
    Yunna C; Mengru H; Fengling W; Lei W; Weidong C
    Eur J Pharm Biopharm; 2021 Aug; 165():75-83. PubMed ID: 33991610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics.
    Chen Q; Liu G; Liu S; Su H; Wang Y; Li J; Luo C
    Trends Pharmacol Sci; 2018 Jan; 39(1):59-74. PubMed ID: 29153879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors.
    Miao L; Lin CM; Huang L
    J Control Release; 2015 Dec; 219():192-204. PubMed ID: 26277065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma.
    Liu Y; Zhou J; Li Q; Li L; Jia Y; Geng F; Zhou J; Yin T
    Adv Drug Deliv Rev; 2021 May; 172():80-103. PubMed ID: 33705874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors.
    Han X; Xu Y; Geranpayehvaghei M; Anderson GJ; Li Y; Nie G
    Biomaterials; 2020 Feb; 232():119745. PubMed ID: 31918228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.