These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34823028)
1. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Skariyachan S; Gopal D; Deshpande D; Joshi A; Uttarkar A; Niranjan V Infect Genet Evol; 2021 Dec; 96():105155. PubMed ID: 34823028 [TBL] [Abstract][Full Text] [Related]
2. Metal-Bound Methisazone; Novel Drugs Targeting Prophylaxis and Treatment of SARS-CoV-2, a Molecular Docking Study. Abdelaal Ahmed Mahmoud M Alkhatip A; Georgakis M; Montero Valenzuela LR; Hamza M; Farag E; Hodgkinson J; Hosny H; Kamal AM; Wagih M; Naguib A; Yassin H; Algameel H; Elayashy M; Abdelhaq M; Younis MI; Mohamed H; Abdulshafi M; Elramely MA Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804129 [TBL] [Abstract][Full Text] [Related]
3. Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Tan Q; Duan L; Ma Y; Wu F; Huang Q; Mao K; Xiao W; Xia H; Zhang S; Zhou E; Ma P; Song S; Li Y; Zhao Z; Sun Y; Li Z; Geng W; Yin Z; Jin Y Bioorg Chem; 2020 Nov; 104():104257. PubMed ID: 32927129 [TBL] [Abstract][Full Text] [Related]
6. Allergen fragrance molecules: a potential relief for COVID-19. Aydın AD; Altınel F; Erdoğmuş H; Son ÇD BMC Complement Med Ther; 2021 Jan; 21(1):41. PubMed ID: 33478471 [TBL] [Abstract][Full Text] [Related]
7. An Overview of the Crystallized Structures of the SARS-CoV-2. Ionescu MI Protein J; 2020 Dec; 39(6):600-618. PubMed ID: 33098476 [TBL] [Abstract][Full Text] [Related]
8. Disrupting protease and deubiquitinase activities of SARS-CoV-2 papain-like protease by natural and synthetic products discovered through multiple computational and biochemical approaches. Waqas M; Ullah S; Ullah A; Halim SA; Rehman NU; Khalid A; Ali A; Khan A; Gibbons S; Csuk R; Al-Harrasi A Int J Biol Macromol; 2024 Oct; 277(Pt 4):134476. PubMed ID: 39111477 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). El-Demerdash A; Metwaly AM; Hassan A; Abd El-Aziz TM; Elkaeed EB; Eissa IH; Arafa RK; Stockand JD Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33808721 [TBL] [Abstract][Full Text] [Related]
10. Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus Abouelela ME; Assaf HK; Abdelhamid RA; Elkhyat ES; Sayed AM; Oszako T; Belbahri L; El Zowalaty AE; Abdelkader MSA Molecules; 2021 Mar; 26(6):. PubMed ID: 33801151 [TBL] [Abstract][Full Text] [Related]
11. Antiviral Activity of Metabolites from Peruvian Plants against SARS-CoV-2: An In Silico Approach. Goyzueta-Mamani LD; Barazorda-Ccahuana HL; Mena-Ulecia K; Chávez-Fumagalli MA Molecules; 2021 Jun; 26(13):. PubMed ID: 34202092 [TBL] [Abstract][Full Text] [Related]
13. Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Skariyachan S; Gopal D; Kadam SP; Muddebihalkar AG; Uttarkar A; Niranjan V J Biomol Struct Dyn; 2021 Feb; 39(3):1121-1137. PubMed ID: 32036742 [TBL] [Abstract][Full Text] [Related]
14. Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection. Francés-Monerris A; García-Iriepa C; Iriepa I; Hognon C; Miclot T; Barone G; Monari A; Marazzi M Phys Chem Chem Phys; 2021 Oct; 23(40):22957-22971. PubMed ID: 34636373 [TBL] [Abstract][Full Text] [Related]
15. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Skariyachan S; Gopal D; Muddebihalkar AG; Uttarkar A; Niranjan V Comput Biol Med; 2021 May; 132():104325. PubMed ID: 33751995 [TBL] [Abstract][Full Text] [Related]
16. Black tea bioactives as inhibitors of multiple targets of SARS-CoV-2 (3CLpro, PLpro and RdRp): a virtual screening and molecular dynamic simulation study. Gogoi M; Borkotoky M; Borchetia S; Chowdhury P; Mahanta S; Barooah AK J Biomol Struct Dyn; 2022 Sep; 40(15):7143-7166. PubMed ID: 33715595 [TBL] [Abstract][Full Text] [Related]
17. Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Skariyachan S; Gopal D; Chakrabarti S; Kempanna P; Uttarkar A; Muddebihalkar AG; Niranjan V Comput Biol Med; 2020 Nov; 126():104054. PubMed ID: 33074111 [TBL] [Abstract][Full Text] [Related]
18. Virtual screening of phytoconstituents from miracle herb Siddiqui S; Upadhyay S; Ahmad R; Gupta A; Srivastava A; Trivedi A; Husain I; Ahmad B; Ahamed M; Khan MA J Biomol Struct Dyn; 2022 Jun; 40(9):3928-3948. PubMed ID: 33289456 [TBL] [Abstract][Full Text] [Related]
19. Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. Nguyen HL; Thai NQ; Truong DT; Li MS J Phys Chem B; 2020 Dec; 124(50):11337-11348. PubMed ID: 33264025 [TBL] [Abstract][Full Text] [Related]
20. Decoding SARS-CoV-2 Transmission and Evolution and Ramifications for COVID-19 Diagnosis, Vaccine, and Medicine. Wang R; Hozumi Y; Yin C; Wei GW J Chem Inf Model; 2020 Dec; 60(12):5853-5865. PubMed ID: 32530284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]