These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34823466)
1. Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data. Bai W; Dong M; Li L; Feng C; Xu W BMC Bioinformatics; 2021 Nov; 22(1):564. PubMed ID: 34823466 [TBL] [Abstract][Full Text] [Related]
2. A comparison of residual diagnosis tools for diagnosing regression models for count data. Feng C; Li L; Sadeghpour A BMC Med Res Methodol; 2020 Jul; 20(1):175. PubMed ID: 32611379 [TBL] [Abstract][Full Text] [Related]
3. Multilevel modeling in single-case studies with zero-inflated and overdispersed count data. Li H; Luo W; Baek E Behav Res Methods; 2024 Apr; 56(4):2765-2781. PubMed ID: 38383801 [TBL] [Abstract][Full Text] [Related]
4. Analyzing the overall effects of the microbiome abundance data with a Bayesian predictive value approach. Zhang X; Yi N Stat Methods Med Res; 2022 Oct; 31(10):1992-2003. PubMed ID: 35695247 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial. Lee KH; Pedroza C; Avritscher EBC; Mosquera RA; Tyson JE Trials; 2023 Sep; 24(1):613. PubMed ID: 37752579 [TBL] [Abstract][Full Text] [Related]
6. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear mixed-effects modeling of longitudinal count data: Bayesian inference about median counts based on the marginal zero-inflated discrete Weibull distribution. Burger DA; Lesaffre E Stat Med; 2021 Oct; 40(23):5078-5095. PubMed ID: 34155664 [TBL] [Abstract][Full Text] [Related]
8. A simulation study of the performance of statistical models for count outcomes with excessive zeros. Zhou Z; Li D; Huh D; Xie M; Mun EY Stat Med; 2024 Oct; 43(24):4752-4767. PubMed ID: 39193779 [TBL] [Abstract][Full Text] [Related]
9. On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data. Rose CE; Martin SW; Wannemuehler KA; Plikaytis BD J Biopharm Stat; 2006; 16(4):463-81. PubMed ID: 16892908 [TBL] [Abstract][Full Text] [Related]
10. Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation. Li H Behav Res Methods; 2024 Oct; 56(7):7963-7984. PubMed ID: 38987450 [TBL] [Abstract][Full Text] [Related]
11. Bayesian variable selection for multivariate zero-inflated models: Application to microbiome count data. Lee KH; Coull BA; Moscicki AB; Paster BJ; Starr JR Biostatistics; 2020 Jul; 21(3):499-517. PubMed ID: 30590511 [TBL] [Abstract][Full Text] [Related]
12. A robust Bayesian mixed effects approach for zero inflated and highly skewed longitudinal count data emanating from the zero inflated discrete Weibull distribution. Burger DA; Schall R; Ferreira JT; Chen DG Stat Med; 2020 Apr; 39(9):1275-1291. PubMed ID: 32092193 [TBL] [Abstract][Full Text] [Related]
13. Zero-inflated Poisson factor model with application to microbiome read counts. Xu T; Demmer RT; Li G Biometrics; 2021 Mar; 77(1):91-101. PubMed ID: 32277466 [TBL] [Abstract][Full Text] [Related]
14. llperm: a permutation of regressor residuals test for microbiome data. Viljanen M; Boshuizen H BMC Bioinformatics; 2022 Dec; 23(1):540. PubMed ID: 36510128 [TBL] [Abstract][Full Text] [Related]
15. Generalized partially linear single-index model for zero-inflated count data. Wang X; Zhang J; Yu L; Yin G Stat Med; 2015 Feb; 34(5):876-86. PubMed ID: 25421596 [TBL] [Abstract][Full Text] [Related]
16. Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data. Zhang X; Guo B; Yi N PLoS One; 2020; 15(11):e0242073. PubMed ID: 33166356 [TBL] [Abstract][Full Text] [Related]
17. Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data. Xu L; Paterson AD; Turpin W; Xu W PLoS One; 2015; 10(7):e0129606. PubMed ID: 26148172 [TBL] [Abstract][Full Text] [Related]
18. Functional linear models for zero-inflated count data with application to modeling hospitalizations in patients on dialysis. Sentürk D; Dalrymple LS; Nguyen DV Stat Med; 2014 Nov; 33(27):4825-40. PubMed ID: 24942314 [TBL] [Abstract][Full Text] [Related]
19. Sequence count data are poorly fit by the negative binomial distribution. Hawinkel S; Rayner JCW; Bijnens L; Thas O PLoS One; 2020; 15(4):e0224909. PubMed ID: 32352970 [TBL] [Abstract][Full Text] [Related]
20. Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data. Zhang X; Yi N Bioinformatics; 2020 Apr; 36(8):2345-2351. PubMed ID: 31904815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]