These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34825181)

  • 41. Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal.
    Martín-Gago P; Olsen CA
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):957-966. PubMed ID: 30024079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cereblon covalent modulation through structure-based design of histidine targeting chemical probes.
    Cruite JT; Dann GP; Che J; Donovan KA; Ferrao S; Ficarro SB; Fischer ES; Gray NS; Huerta F; Kong NR; Liu H; Marto JA; Metivier RJ; Nowak RP; Zerfas BL; Jones LH
    RSC Chem Biol; 2022 Aug; 3(9):1105-1110. PubMed ID: 36128501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Covalent inhibitors: an opportunity for rational target selectivity.
    Lagoutte R; Patouret R; Winssinger N
    Curr Opin Chem Biol; 2017 Aug; 39():54-63. PubMed ID: 28609675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Covalent Fragment Screening Identifies Rgl2 RalGEF Cysteine for Targeted Covalent Inhibition of Ral GTPase Activation.
    Bum-Erdene K; Ghozayel MK; Xu D; Meroueh SO
    ChemMedChem; 2022 Mar; 17(6):e202100750. PubMed ID: 35061330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology.
    Wani R; Nagata A; Murray BW
    Front Pharmacol; 2014; 5():224. PubMed ID: 25339904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach?
    Kollar J; Frecer V
    J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fragment-based covalent ligand discovery.
    Lu W; Kostic M; Zhang T; Che J; Patricelli MP; Jones LH; Chouchani ET; Gray NS
    RSC Chem Biol; 2021 Apr; 2(2):354-367. PubMed ID: 34458789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology.
    Gehringer M; Laufer SA
    J Med Chem; 2019 Jun; 62(12):5673-5724. PubMed ID: 30565923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility.
    Myllykoski M; Baumann A; Hensley K; Kursula P
    Amino Acids; 2017 Apr; 49(4):747-759. PubMed ID: 28044206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Advances in the application of affinity separation for analyzing protein ubiquitination].
    Zhong H; Huang Y; Jin Y; Zhao R
    Se Pu; 2021 Jan; 39(1):26-33. PubMed ID: 34227356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genie in a bottle: controlled release helps tame natural polypharmacology?
    Long MJ; Liu X; Aye Y
    Curr Opin Chem Biol; 2019 Aug; 51():48-56. PubMed ID: 30913473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Analysis of Pharmacophore Features and Quantitative Structure-Activity Relationships for CD38 Covalent and Non-covalent Inhibitors.
    Zhang S; Xue X; Zhang L; Zhang L; Liu Z
    Chem Biol Drug Des; 2015 Dec; 86(6):1411-24. PubMed ID: 26072680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism-Based and Computational-Driven Covalent Drug Design.
    Luo YL
    J Chem Inf Model; 2021 Nov; 61(11):5307-5311. PubMed ID: 34757749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Achieving a low human dose for targeted covalent drugs: Pharmacokinetic and pharmacodynamic considerations on target characteristics and drug attributes.
    Yang Z
    Biopharm Drug Dispos; 2021 Apr; 42(4):150-159. PubMed ID: 33547681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Statistical Analysis and Prediction of Covalent Ligand Targeted Cysteine Residues.
    Zhang W; Pei J; Lai L
    J Chem Inf Model; 2017 Jun; 57(6):1453-1460. PubMed ID: 28510428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Covalent inhibitors design and discovery.
    De Cesco S; Kurian J; Dufresne C; Mittermaier AK; Moitessier N
    Eur J Med Chem; 2017 Sep; 138():96-114. PubMed ID: 28651155
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting RNA with small molecules-A safety perspective.
    Lightfoot HL; Smith GF
    Br J Pharmacol; 2023 Jan; ():. PubMed ID: 36631428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery.
    Hallenbeck KK; Turner DM; Renslo AR; Arkin MR
    Curr Top Med Chem; 2017; 17(1):4-15. PubMed ID: 27449257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.