These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34825452)

  • 1. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane.
    Wang X; Jiao Y; Li L; Zheng Y; Qiao SZ
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202114253. PubMed ID: 34825452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure.
    Bondue CJ; Koper MTM
    J Am Chem Soc; 2019 Jul; 141(30):12071-12078. PubMed ID: 31274297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers.
    Schoenbaum CA; Schwartz DK; Medlin JW
    Acc Chem Res; 2014 Apr; 47(4):1438-45. PubMed ID: 24635215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociative Adsorption of Acetone on Platinum Single-Crystal Electrodes.
    Bondue CJ; Liang Z; Koper MTM
    J Phys Chem C Nanomater Interfaces; 2021 Apr; 125(12):6643-6649. PubMed ID: 33868544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyacetone: A Glycerol-Based Platform for Electrocatalytic Hydrogenation and Hydrodeoxygenation Processes.
    Sauter W; Bergmann OL; Schröder U
    ChemSusChem; 2017 Aug; 10(15):3105-3110. PubMed ID: 28643864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Reaction Mechanism of Glycerol Hydrogenolysis over a CuCr
    Yun YS; Kim TY; Yun D; Lee KR; Han JW; Yi J
    ChemSusChem; 2017 Jan; 10(2):442-454. PubMed ID: 27863078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Supported Raney Nickel Catalyst for Acetone Hydrogenation with High Selectivity.
    Lu S; Wu J; Peng H; Chen Y
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32069793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-adjusting platinum surface for acetone hydrogenation.
    Demir B; Kropp T; Rivera-Dones KR; Gilcher EB; Huber GW; Mavrikakis M; Dumesic JA
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3446-3450. PubMed ID: 32005709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Active Sites for High CO Selectivity during CO
    Galhardo TS; Braga AH; Arpini BH; Szanyi J; Gonçalves RV; Zornio BF; Miranda CR; Rossi LM
    J Am Chem Soc; 2021 Mar; 143(11):4268-4280. PubMed ID: 33661617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction.
    Li J; Li X; Gunathunge CM; Waegele MM
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9220-9229. PubMed ID: 31004052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water.
    Wu Y; Liu C; Wang C; Yu Y; Shi Y; Zhang B
    Nat Commun; 2021 Jun; 12(1):3881. PubMed ID: 34162851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Hydrogenation of Furfural in Aqueous Acetic Acid Media with Enhanced 2-Methylfuran Selectivity Using CuPd Bimetallic Catalysts.
    Zhou P; Li L; Mosali VSS; Chen Y; Luan P; Gu Q; Turner DR; Huang L; Zhang J
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202117809. PubMed ID: 35043530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ studies of butyronitrile adsorption and hydrogenation on Pt/Al2O3 using attenuated total reflection infrared spectroscopy.
    Ortiz-Hernandez I; Williams CT
    Langmuir; 2007 Mar; 23(6):3172-8. PubMed ID: 17295524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions.
    Wang S; Uwakwe K; Yu L; Ye J; Zhu Y; Hu J; Chen R; Zhang Z; Zhou Z; Li J; Xie Z; Deng D
    Nat Commun; 2021 Dec; 12(1):7072. PubMed ID: 34873161
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Shan W; Liu R; Zhao H; He Z; Lai Y; Li S; He G; Liu J
    ACS Nano; 2020 Sep; 14(9):11363-11372. PubMed ID: 32790343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RuRh Bimetallene Nanoring as High-efficiency pH-Universal Catalyst for Hydrogen Evolution Reaction.
    Mu X; Gu J; Feng F; Xiao Z; Chen C; Liu S; Mu S
    Adv Sci (Weinh); 2021 Jan; 8(2):2002341. PubMed ID: 33511007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity Control on Hydrogenation of Substituted Nitroarenes through End-On Adsorption of Reactants in Zeolite-Encapsulated Platinum Nanoparticles.
    Chen Q; Wang M; Zhang C; Ren K; Xin Y; Zhao M; Xing E
    Chem Asian J; 2018 Apr; ():. PubMed ID: 29709106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores.
    Zhang J; Wang L; Shao Y; Wang Y; Gates BC; Xiao FS
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9747-9751. PubMed ID: 28503914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of C
    Padole MC; Gangwar BP; Pandey A; Singhal A; Sharma S; Deshpande PA
    Phys Chem Chem Phys; 2017 May; 19(21):14148-14159. PubMed ID: 28524921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capping ligands as selectivity switchers in hydrogenation reactions.
    Kwon SG; Krylova G; Sumer A; Schwartz MM; Bunel EE; Marshall CL; Chattopadhyay S; Lee B; Jellinek J; Shevchenko EV
    Nano Lett; 2012 Oct; 12(10):5382-8. PubMed ID: 22988832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.