BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34825656)

  • 1. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device.
    Burdis R; Chariyev-Prinz F; Kelly DJ
    Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34825656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage.
    Dufour A; Gallostra XB; O'Keeffe C; Eichholz K; Von Euw S; Garcia O; Kelly DJ
    Biomaterials; 2022 Apr; 283():121405. PubMed ID: 35220017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
    Daly AC; Kelly DJ
    Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues.
    Burdis R; Kelly DJ
    Acta Biomater; 2021 May; 126():1-14. PubMed ID: 33711529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage.
    Schon BS; Hooper GJ; Woodfield TB
    Ann Biomed Eng; 2017 Jan; 45(1):100-114. PubMed ID: 27073109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing.
    Burdis R; Chariyev-Prinz F; Browe DC; Freeman FE; Nulty J; McDonnell EE; Eichholz KF; Wang B; Brama P; Kelly DJ
    Biomaterials; 2022 Oct; 289():121750. PubMed ID: 36084483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering.
    Behan K; Dufour A; Garcia O; Kelly D
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Bioprinting of Zonally Stratified Human Articular Cartilage Using Scaffold-Free Tissue Strands as Building Blocks.
    Wu Y; Ayan B; Moncal KK; Kang Y; Dhawan A; Koduru SV; Ravnic DJ; Kamal F; Ozbolat IT
    Adv Healthc Mater; 2020 Nov; 9(22):e2001657. PubMed ID: 33073548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering.
    Rathan S; Dejob L; Schipani R; Haffner B; Möbius ME; Kelly DJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1801501. PubMed ID: 30624015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage.
    Sawatjui N; Limpaiboon T; Schrobback K; Klein T
    J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application and development of 3D bioprinting in cartilage tissue engineering.
    Li M; Sun D; Zhang J; Wang Y; Wei Q; Wang Y
    Biomater Sci; 2022 Sep; 10(19):5430-5458. PubMed ID: 35972308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells.
    Burdis R; Kronemberger GS; Kelly DJ
    Tissue Eng Part C Methods; 2023 Apr; 29(4):121-133. PubMed ID: 36719783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds.
    Barceló X; Eichholz KF; Gonçalves IF; Garcia O; Kelly DJ
    Acta Biomater; 2023 Mar; 158():216-227. PubMed ID: 36638941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.
    Ren X; Wang F; Chen C; Gong X; Yin L; Yang L
    BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.