These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34825885)

  • 1. Key carboxylate residues for iron transit through the prokaryotic ferritin
    Bradley JM; Fair J; Hemmings AM; Le Brun NE
    Microbiology (Reading); 2021 Nov; 167(11):. PubMed ID: 34825885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn.
    Bradley JM; Pullin J; Moore GR; Svistunenko DA; Hemmings AM; Le Brun NE
    Dalton Trans; 2020 Feb; 49(5):1545-1554. PubMed ID: 31930254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly is prerequisite for catalysis of Fe(II) oxidation by catalytically active subunits of ferritin.
    Ebrahimi KH; Hagedoorn PL; Hagen WR
    J Biol Chem; 2015 Oct; 290(44):26801-10. PubMed ID: 26370076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The iron redox and hydrolysis chemistry of the ferritins.
    Bou-Abdallah F
    Biochim Biophys Acta; 2010 Aug; 1800(8):719-31. PubMed ID: 20382203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.
    Haldar S; Bevers LE; Tosha T; Theil EC
    J Biol Chem; 2011 Jul; 286(29):25620-7. PubMed ID: 21592958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site.
    Masuda T; Goto F; Yoshihara T; Mikami B
    Biochem Biophys Res Commun; 2010 Sep; 400(1):94-9. PubMed ID: 20705053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the structural and functional roles of a putative metal entry site in encapsulated ferritins.
    Piergentili C; Ross J; He D; Gallagher KJ; Stanley WA; Adam L; Mackay CL; Baslé A; Waldron KJ; Clarke DJ; Marles-Wright J
    J Biol Chem; 2020 Nov; 295(46):15511-15526. PubMed ID: 32878987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of O
    Bradley JM; Svistunenko DA; Pullin J; Hill N; Stuart RK; Palenik B; Wilson MT; Hemmings AM; Moore GR; Le Brun NE
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2058-2067. PubMed ID: 30659147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis.
    Treffry A; Bauminger ER; Hechel D; Hodson NW; Nowik I; Yewdall SJ; Harrison PM
    Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):721-8. PubMed ID: 7506527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate accelerates displacement of Fe(III) by Fe(II) in the ferroxidase center of Pyrococcus furiosus ferritin.
    Honarmand Ebrahimi K; Hagedoorn PL; Hagen WR
    FEBS Lett; 2013 Jan; 587(2):220-5. PubMed ID: 23247211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin.
    Masuda T; Goto F; Yoshihara T; Mikami B
    J Biol Chem; 2010 Feb; 285(6):4049-4059. PubMed ID: 20007325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
    Behera RK; Theil EC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7925-30. PubMed ID: 24843174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ferroxidase Centre of Escherichia coli Bacterioferritin Plays a Key Role in the Reductive Mobilisation of the Mineral Iron Core.
    Bradley JM; Bugg Z; Sackey A; Andrews SC; Wilson MT; Svistunenko DA; Moore GR; Le Brun NE
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401379. PubMed ID: 38407997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages.
    Theil EC; Tosha T; Behera RK
    Acc Chem Res; 2016 May; 49(5):784-91. PubMed ID: 27136423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
    Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR
    Nat Chem Biol; 2012 Nov; 8(11):941-8. PubMed ID: 23001032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of site-directed modifications on the formation of iron cores in ferritin.
    Wade VJ; Levi S; Arosio P; Treffry A; Harrison PM; Mann S
    J Mol Biol; 1991 Oct; 221(4):1443-52. PubMed ID: 1942061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites.
    Tosha T; Behera RK; Theil EC
    Inorg Chem; 2012 Nov; 51(21):11406-11. PubMed ID: 23092300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the ferroxidase site of ferritins from higher eukaryotes.
    Bertini I; Lalli D; Mangani S; Pozzi C; Rosa C; Theil EC; Turano P
    J Am Chem Soc; 2012 Apr; 134(14):6169-76. PubMed ID: 22424302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin.
    Ciambellotti S; Pratesi A; Tassone G; Turano P; Mangani S; Pozzi C
    Chemistry; 2021 Oct; 27(59):14690-14701. PubMed ID: 34343376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.