These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 34825932)
1. Artificial intelligence on MRI for molecular subtyping of diffuse gliomas: feature comparison, visualization, and correlation between radiomics and deep learning. Zhou Z Eur Radiol; 2022 Feb; 32(2):745-746. PubMed ID: 34825932 [No Abstract] [Full Text] [Related]
2. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning. Li Y; Wei D; Liu X; Fan X; Wang K; Li S; Zhang Z; Ma K; Qian T; Jiang T; Zheng Y; Wang Y Eur Radiol; 2022 Feb; 32(2):747-758. PubMed ID: 34417848 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence-based MRI radiomics and radiogenomics in glioma. Fan H; Luo Y; Gu F; Tian B; Xiong Y; Wu G; Nie X; Yu J; Tong J; Liao X Cancer Imaging; 2024 Mar; 24(1):36. PubMed ID: 38486342 [TBL] [Abstract][Full Text] [Related]
4. Intensity standardization of MRI prior to radiomic feature extraction for artificial intelligence research in glioma-a systematic review. Fatania K; Mohamud F; Clark A; Nix M; Short SC; O'Connor J; Scarsbrook AF; Currie S Eur Radiol; 2022 Oct; 32(10):7014-7025. PubMed ID: 35486171 [TBL] [Abstract][Full Text] [Related]
5. A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization. Gore S; Chougule T; Jagtap J; Saini J; Ingalhalikar M Acad Radiol; 2021 Nov; 28(11):1599-1621. PubMed ID: 32660755 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas. Lu CF; Hsu FT; Hsieh KL; Kao YJ; Cheng SJ; Hsu JB; Tsai PH; Chen RJ; Huang CC; Yen Y; Chen CY Clin Cancer Res; 2018 Sep; 24(18):4429-4436. PubMed ID: 29789422 [No Abstract] [Full Text] [Related]
7. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338 [TBL] [Abstract][Full Text] [Related]
8. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Nie D; Lu J; Zhang H; Adeli E; Wang J; Yu Z; Liu L; Wang Q; Wu J; Shen D Sci Rep; 2019 Jan; 9(1):1103. PubMed ID: 30705340 [TBL] [Abstract][Full Text] [Related]
9. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Kinoshita M; Kanemura Y; Narita Y; Kishima H Neurol Med Chir (Tokyo); 2021 Sep; 61(9):505-514. PubMed ID: 34373429 [TBL] [Abstract][Full Text] [Related]
10. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
11. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. Buchlak QD; Esmaili N; Leveque JC; Bennett C; Farrokhi F; Piccardi M J Clin Neurosci; 2021 Jul; 89():177-198. PubMed ID: 34119265 [TBL] [Abstract][Full Text] [Related]
12. Artificial Intelligence and Deep Learning of Head and Neck Cancer. Abdel Razek AAK; Khaled R; Helmy E; Naglah A; AbdelKhalek A; El-Baz A Magn Reson Imaging Clin N Am; 2022 Feb; 30(1):81-94. PubMed ID: 34802583 [TBL] [Abstract][Full Text] [Related]
13. Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas. Liu X; Li J; Liao X; Luo Z; Xu Q; Pan H; Zhou Q; Tao Y; Shi F; Lu G; Zhang Z Neuroradiology; 2022 Feb; 64(2):323-331. PubMed ID: 34368897 [TBL] [Abstract][Full Text] [Related]
14. Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas. Wang Y; Shao Q; Luo S; Fu R Math Biosci Eng; 2021 Sep; 18(6):8084-8095. PubMed ID: 34814290 [TBL] [Abstract][Full Text] [Related]
15. Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches. Fritz B; Fritz J Skeletal Radiol; 2022 Feb; 51(2):315-329. PubMed ID: 34467424 [TBL] [Abstract][Full Text] [Related]
16. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario. Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601 [TBL] [Abstract][Full Text] [Related]
18. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Satake H; Ishigaki S; Ito R; Naganawa S Radiol Med; 2022 Jan; 127(1):39-56. PubMed ID: 34704213 [TBL] [Abstract][Full Text] [Related]
19. AI Neuropathologist: an innovative technology enabling a faultless pathological diagnosis? Komori T Neuro Oncol; 2021 Jan; 23(1):1-2. PubMed ID: 33059363 [No Abstract] [Full Text] [Related]
20. On the promise of artificial intelligence for standardizing radiographic response assessment in gliomas. Ellingson BM Neuro Oncol; 2019 Nov; 21(11):1346-1347. PubMed ID: 31504809 [No Abstract] [Full Text] [Related] [Next] [New Search]