BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 34826338)

  • 1. CRISPR/Cas9 editing in conditionally immortalized HoxB8 cells for studying gene regulation in mouse dendritic cells.
    Xu H; Look T; Prithiviraj S; Lennartz D; Cáceres MD; Götz K; Wanek P; Häcker H; Kramann R; Seré K; Zenke M
    Eur J Immunol; 2022 Nov; 52(11):1859-1862. PubMed ID: 34826338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 Immunoengineering of Hoxb8-Immortalized Progenitor Cells for Revealing CCR7-Mediated Dendritic Cell Signaling and Migration Mechanisms
    Hammerschmidt SI; Werth K; Rothe M; Galla M; Permanyer M; Patzer GE; Bubke A; Frenk DN; Selich A; Lange L; Schambach A; Bošnjak B; Förster R
    Front Immunol; 2018; 9():1949. PubMed ID: 30210501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Generation of Murine Dendritic Cells from Hoxb8-Immortalized Hematopoietic Progenitors.
    Häcker H
    Methods Mol Biol; 2023; 2618():93-107. PubMed ID: 36905511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration.
    Leithner A; Renkawitz J; De Vries I; Hauschild R; Häcker H; Sixt M
    Eur J Immunol; 2018 Jun; 48(6):1074-1077. PubMed ID: 29436709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic modification of ER-Hoxb8 osteoclast precursors using CRISPR/Cas9 as a novel way to allow studies on osteoclast biology.
    Di Ceglie I; van den Akker GG; Ascone G; Ten Harkel B; Häcker H; van de Loo FA; Koenders MI; van der Kraan PM; de Vries TJ; Vogl T; Roth J; van Lent PL
    J Leukoc Biol; 2017 Apr; 101(4):957-966. PubMed ID: 27920208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and CRISPR/Cas9-mediated genetic manipulation of neutrophils derived from Hoxb8-ER-immortalized myeloid progenitors.
    Shannon JG; Hinnebusch BJ
    J Leukoc Biol; 2023 Jul; 114(1):42-52. PubMed ID: 36992528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cas9
    Roberts AW; Popov LM; Mitchell G; Ching KL; Licht DJ; Golovkine G; Barton GM; Cox JS
    Elife; 2019 Jun; 8():. PubMed ID: 31204998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Functions of Mouse Neutrophils Derived from HoxB8-Transduced Conditionally Immortalized Myeloid Progenitors.
    Orosz A; Walzog B; Mócsai A
    J Immunol; 2021 Jan; 206(2):432-445. PubMed ID: 33310871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic mice for in vivo epigenome editing with CRISPR-based systems.
    Gemberling MP; Siklenka K; Rodriguez E; Tonn-Eisinger KR; Barrera A; Liu F; Kantor A; Li L; Cigliola V; Hazlett MF; Williams CA; Bartelt LC; Madigan VJ; Bodle JC; Daniels H; Rouse DC; Hilton IB; Asokan A; Ciofani M; Poss KD; Reddy TE; West AE; Gersbach CA
    Nat Methods; 2021 Aug; 18(8):965-974. PubMed ID: 34341582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for mouse and human DC generation.
    Lutz MB; Ali S; Audiger C; Autenrieth SE; Berod L; Bigley V; Cyran L; Dalod M; Dörrie J; Dudziak D; Flórez-Grau G; Giusiano L; Godoy GJ; Heuer M; Krug AB; Lehmann CHK; Mayer CT; Naik SH; Scheu S; Schreibelt G; Segura E; Seré K; Sparwasser T; Tel J; Xu H; Zenke M
    Eur J Immunol; 2023 Nov; 53(11):e2249816. PubMed ID: 36303448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Hoxb8-immortalized hematopoietic progenitors - a potent tool to study macrophage tissue migration.
    Accarias S; Sanchez T; Labrousse A; Ben-Neji M; Boyance A; Poincloux R; Maridonneau-Parini I; Le Cabec V
    J Cell Sci; 2020 Mar; 133(5):. PubMed ID: 31964707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 14. The Derivation and Use of HoxB8-Driven Conditionally Immortalized Macrophages.
    Lail SS; McKenna N; Yates RM
    Methods Mol Biol; 2023; 2692():109-120. PubMed ID: 37365464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of Gene Regulation by Genome Editing.
    Yeo NC; Church GM
    Methods Mol Biol; 2023; 2594():59-68. PubMed ID: 36264488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
    Moradpour M; Abdulah SNA
    Plant Biotechnol J; 2020 Jan; 18(1):32-44. PubMed ID: 31392820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of CRISPR-Cas9 Tools for Transcriptional Repression and Gene Disruption in the BEVS.
    Bruder MR; Walji SD; Aucoin MG
    Viruses; 2021 Sep; 13(10):. PubMed ID: 34696355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing.
    Park H; Shin J; Choi H; Cho B; Kim J
    Cells; 2020 Jun; 9(6):. PubMed ID: 32532133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and efficient generation of antigen-specific isogenic T cells from cryopreserved blood samples.
    Eerkens AL; Vledder A; van Rooij N; Foijer F; Nijman HW; de Bruyn M
    Immunol Cell Biol; 2022 Apr; 100(4):285-295. PubMed ID: 35194830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.