These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34826367)

  • 1. Leader manipulator with hand rest function for microsurgery.
    Jeong S; Tadano K
    Int J Med Robot; 2022 Apr; 18(2):e2355. PubMed ID: 34826367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward robot-assisted vascular microsurgery in the retina.
    Jensen PS; Grace KW; Attariwala R; Colgate JE; Glucksberg MR
    Graefes Arch Clin Exp Ophthalmol; 1997 Nov; 235(11):696-701. PubMed ID: 9407227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hamlyn CRM: a compact master manipulator for surgical robot remote control.
    Zhang D; Liu J; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):503-514. PubMed ID: 31956954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel encountered-type master device with precise manipulation for robot-assisted microsurgery.
    Kim DS; Yang UJ; Cheon B; Baek D; Kwon DS
    Int J Med Robot; 2021 Dec; 17(6):e2314. PubMed ID: 34297469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locally operated assistant manipulators with selectable connection system for robotically assisted laparoscopic solo surgery.
    Fukui S; Kawai T; Nishizawa Y; Nishikawa A; Nakamura T; Iwamoto N; Horise Y; Masamune K
    Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):683-693. PubMed ID: 33713003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery.
    Hoshyarmanesh H; Zareinia K; Lama S; Durante B; Sutherland GR
    Int J Med Robot; 2020 Aug; 16(4):e2101. PubMed ID: 32181954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and experimental validation of a master manipulator with position and posture decoupling for laparoscopic surgical robot.
    Lei Y; Li Y; Song R; Wang D; Zhang T; Zhang G; Du F
    Int J Med Robot; 2022 Aug; 18(4):e2398. PubMed ID: 35348285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parallel robot to assist vitreoretinal surgery.
    Nakano T; Sugita N; Ueta T; Tamaki Y; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2009 Nov; 4(6):517-26. PubMed ID: 20033328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
    Deshpande N; Chauhan M; Pacchierotti C; Prattichizzo D; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5156-5159. PubMed ID: 28269426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prototype surgical manipulator for robotic intraocular micro surgery.
    Mulgaonkar AP; Hubschman JP; Bourges JL; Jordan BL; Cham C; Wilson JT; Tsao TC; Culjat MO
    Stud Health Technol Inform; 2009; 142():215-7. PubMed ID: 19377152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a telerobotic system to assist surgeons in microsurgery.
    Das H; Zak H; Johnson J; Crouch J; Frambach D
    Comput Aided Surg; 1999; 4(1):15-25. PubMed ID: 10417827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel microsurgery robot mechanism with mechanical motion scalability for intraocular and reconstructive surgery.
    Yang UJ; Kim D; Hwang M; Kong D; Kim J; Nho YH; Lee W; Kwon DS
    Int J Med Robot; 2021 Jun; 17(3):e2240. PubMed ID: 33599377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonatiuh II: assisting manipulator for laparoscopic surgery.
    Martínez AM; Flores RO; Vera MG; Salazar RC; Luis MJ; Daniel L
    Minim Invasive Ther Allied Technol; 2007; 16(5):310-3. PubMed ID: 17917995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of Force Detection and Feedback Control for Slave Manipulator of Master/Slave Surgical Robot.
    Shi H; Zhang B; Mei X; Song Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.