These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34826478)

  • 1. Reducing livestock snow disaster risk in the Qinghai-Tibetan Plateau due to warming and socioeconomic development.
    Ye T; Liu W; Chen S; Chen D; Shi P; Wang A; Li Y
    Sci Total Environ; 2022 Mar; 813():151869. PubMed ID: 34826478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.
    Gao Q; Guo Y; Xu H; Ganjurjav H; Li Y; Wan Y; Qin X; Ma X; Liu S
    Sci Total Environ; 2016 Jun; 554-555():34-41. PubMed ID: 26950617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: Quantification based on generalized additive models.
    Li Y; Ye T; Liu W; Gao Y
    Sci Total Environ; 2018 Jun; 625():87-95. PubMed ID: 29289010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data set for analyzing livestock snow disasters in the Qinghai-Tibetan Plateau.
    Ye T; Li Y; Liu W; Gao Y
    Data Brief; 2019 Apr; 23():103809. PubMed ID: 31372454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau.
    Wang G; Baskin CC; Baskin JM; Yang X; Liu G; Ye X; Zhang X; Huang Z
    Am J Bot; 2018 Jun; 105(6):967-976. PubMed ID: 29927486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural Adaptation to Global Warming in the Tibetan Plateau.
    Song Y; Wang C; Linderholm HW; Tian J; Shi Y; Xu J; Liu Y
    Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31575015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold-season disasters on the Eurasian steppes: Climate-driven or man-made.
    Nandintsetseg B; Shinoda M; Du C; Munkhjargal E
    Sci Rep; 2018 Oct; 8(1):14769. PubMed ID: 30283039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution pattern of degree-day factors of glaciers on the Qinghai-Tibetan Plateau.
    Deng C; Zhang W
    Environ Monit Assess; 2018 Jul; 190(8):475. PubMed ID: 30022373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s.
    Tang L; Duan X; Kong F; Zhang F; Zheng Y; Li Z; Mei Y; Zhao Y; Hu S
    Sci Rep; 2018 May; 8(1):7331. PubMed ID: 29743516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case study on the Qinghai-Tibet Plateau.
    Liang Y; Song W
    J Environ Manage; 2022 Sep; 318():115607. PubMed ID: 35780675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations of forage yield and forage-livestock balance in grasslands over the Tibetan Pla-teau, China.
    Mo XG; Liu W; Meng CC; Hu S; Liu SX; Lin ZH
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2415-2425. PubMed ID: 34313059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau.
    Zhang H; Immerzeel WW; Zhang F; de Kok RJ; Chen D; Yan W
    Sci Total Environ; 2022 Jan; 803():149889. PubMed ID: 34482131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.
    Chen H; Zhu Q; Peng C; Wu N; Wang Y; Fang X; Gao Y; Zhu D; Yang G; Tian J; Kang X; Piao S; Ouyang H; Xiang W; Luo Z; Jiang H; Song X; Zhang Y; Yu G; Zhao X; Gong P; Yao T; Wu J
    Glob Chang Biol; 2013 Oct; 19(10):2940-55. PubMed ID: 23744573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projected changes of alpine grassland carbon dynamics in response to climate change and elevated CO2 concentrations under Representative Concentration Pathways (RCP) scenarios.
    Han P; Lin X; Zhang W; Wang G; Wang Y
    PLoS One; 2019; 14(7):e0215261. PubMed ID: 31329592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Model between Near-Surface Air Temperature Change and Dynamic Influencing Factors in the Eastern Tibetan Plateau, China.
    Xu W; Wang Q; Chang D; Xie J; Yang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing season carries stronger contributions to albedo dynamics on the Tibetan plateau.
    Tian L; Chen J; Zhang Y
    PLoS One; 2017; 12(9):e0180559. PubMed ID: 28886037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.
    Chen X; An S; Inouye DW; Schwartz MD
    Glob Chang Biol; 2015 Oct; 21(10):3635-46. PubMed ID: 25906987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First detection and genetic characterization of ungulate tetraparvovirus 2 and ungulate tetraparvovirus 4 in special livestock on the Qinghai-Tibet Plateau in China.
    Pan Y; Wang Y; Wang M; Zhang Q; Baloch AR; Zhou J; Ma J; Kashif J; Xu G; Wang L; Fan J; Cui Y; Yu S
    Virol J; 2019 May; 16(1):56. PubMed ID: 31046791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warming and land use change concurrently erode ecosystem services in Tibet.
    Hopping KA; Knapp AK; Dorji T; Klein JA
    Glob Chang Biol; 2018 Nov; 24(11):5534-5548. PubMed ID: 30086187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.