These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34826523)

  • 1. Comparison of in vitro transformation efficiency methods for Plasmodium falciparum.
    Wang S; Zeng W; Zhao W; Xiang Z; Zhao H; Yang Q; Li X; Duan M; Li X; Wang X; Si Y; Rosenthal BM; Yang Z
    Mol Biochem Parasitol; 2022 Jan; 247():111432. PubMed ID: 34826523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lyse-Reseal Erythrocytes for Transfection of Plasmodium falciparum.
    Govindarajalu G; Rizvi Z; Kumar D; Sijwali PS
    Sci Rep; 2019 Dec; 9(1):19952. PubMed ID: 31882761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient CRISPR/Cas9 system in Plasmodium falciparum using Cas9-expressing parasites and a linear donor template.
    Nishi T; Shinzawa N; Yuda M; Iwanaga S
    Sci Rep; 2021 Sep; 11(1):18501. PubMed ID: 34531479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Generation of Marker-Free P. falciparum Fluorescent Reporter Lines Using Modified CRISPR/Cas9 Constructs and Selection Protocol.
    Mogollon CM; van Pul FJ; Imai T; Ramesar J; Chevalley-Maurel S; de Roo GM; Veld SA; Kroeze H; Franke-Fayard BM; Janse CJ; Khan SM
    PLoS One; 2016; 11(12):e0168362. PubMed ID: 27997583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 system in Plasmodium falciparum using the centromere plasmid.
    Payungwoung T; Shinzawa N; Hino A; Nishi T; Murata Y; Yuda M; Iwanaga S
    Parasitol Int; 2018 Oct; 67(5):605-608. PubMed ID: 29886342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733.
    Crawford ED; Quan J; Horst JA; Ebert D; Wu W; DeRisi JL
    PLoS One; 2017; 12(5):e0178163. PubMed ID: 28542423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfection of Plasmodium falciparum within human red blood cells.
    Wu Y; Sifri CD; Lei HH; Su XZ; Wellems TE
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):973-7. PubMed ID: 7862676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel nanosomes for gene delivery to Plasmodium falciparum-infected red blood cells.
    Gopalakrishnan AM; Kundu AK; Mandal TK; Kumar N
    Sci Rep; 2013; 3():1534. PubMed ID: 23525038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tagging to endogenous genes of Plasmodium falciparum using CRISPR/Cas9.
    Kuang D; Qiao J; Li Z; Wang W; Xia H; Jiang L; Dai J; Fang Q; Dai X
    Parasit Vectors; 2017 Dec; 10(1):595. PubMed ID: 29197418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic editing by CRISPR/dCas9 in
    Xiao B; Yin S; Hu Y; Sun M; Wei J; Huang Z; Wen Y; Dai X; Chen H; Mu J; Cui L; Jiang L
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):255-260. PubMed ID: 30584102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfection of the human malaria parasite Plasmodium falciparum.
    Crabb BS; Rug M; Gilberger TW; Thompson JK; Triglia T; Maier AG; Cowman AF
    Methods Mol Biol; 2004; 270():263-76. PubMed ID: 15153633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmodium falciparum In Vitro Drug Resistance Selections and Gene Editing.
    Ng CL; Fidock DA
    Methods Mol Biol; 2019; 2013():123-140. PubMed ID: 31267498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast-Track Phenotypic Characterization of Plasmodium falciparum Vaccine Antigens through Lyse-Reseal Erythrocytes Mediated Delivery (LyRED) of RNA Interference for Targeted Translational Repression.
    Chakrabarti M; Garg S; Munjal A; Karan S; Pati S; Garg LC; Singh S
    Methods Mol Biol; 2022; 2410():539-553. PubMed ID: 34914066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved chloramphenicol acetyltransferase assay for Plasmodium falciparum transfection.
    Lucas SJ; Holder AA
    Mol Biochem Parasitol; 2004 Aug; 136(2):287-96. PubMed ID: 15478807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two methods for transformation of Plasmodium knowlesi: Direct schizont electroporation and spontaneous plasmid uptake from plasmid-loaded red blood cells.
    Moraes Barros RR; Gibson TJ; Kite WA; Sá JM; Wellems TE
    Mol Biochem Parasitol; 2017 Dec; 218():16-22. PubMed ID: 28988930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Genome Editing Reveals That the Intron Is Not Essential for
    Bryant JM; Regnault C; Scheidig-Benatar C; Baumgarten S; Guizetti J; Scherf A
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698275
    [No Abstract]   [Full Text] [Related]  

  • 17. The Basal Complex Protein PfMORN1 Is Not Required for Asexual Replication of Plasmodium falciparum.
    Moran CJ; Dvorin JD
    mSphere; 2021 Dec; 6(6):e0089521. PubMed ID: 34878291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB.
    Balabaskaran-Nina P; Desai SA
    Parasit Vectors; 2018 Oct; 11(1):548. PubMed ID: 30333047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum.
    Hasenkamp S; Russell KT; Horrocks P
    Malar J; 2012 Jun; 11():210. PubMed ID: 22720754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of CRISPR/Cas System for Improving Genome Editing Efficiency in
    Zhao Y; Wang F; Wang C; Zhang X; Jiang C; Ding F; Shen L; Zhang Q
    Front Microbiol; 2020; 11():625862. PubMed ID: 33488567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.