These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Lutzu GA; Turgut Dunford N Front Biosci (Landmark Ed); 2018 Mar; 23(8):1487-1504. PubMed ID: 29293446 [TBL] [Abstract][Full Text] [Related]
23. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Markou G; Nerantzis E Biotechnol Adv; 2013 Dec; 31(8):1532-42. PubMed ID: 23928208 [TBL] [Abstract][Full Text] [Related]
24. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294 [TBL] [Abstract][Full Text] [Related]
25. Emerging trends in the pretreatment of microalgal biomass and recovery of value-added products: A review. Pradhan N; Kumar S; Selvasembian R; Rawat S; Gangwar A; Senthamizh R; Yuen YK; Luo L; Ayothiraman S; Saratale GD; Mal J Bioresour Technol; 2023 Feb; 369():128395. PubMed ID: 36442602 [TBL] [Abstract][Full Text] [Related]
27. Microalgal flocculation: Global research progress and prospects for algal biorefinery. Malik S; Khan F; Atta Z; Habib N; Haider MN; Wang N; Alam A; Jambi EJ; Gull M; Mehmood MA; Zhu H Biotechnol Appl Biochem; 2020 Jan; 67(1):52-60. PubMed ID: 31584208 [TBL] [Abstract][Full Text] [Related]
28. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Udayan A; Pandey AK; Sirohi R; Sreekumar N; Sang BI; Sim SJ; Kim SH; Pandey A Phytochem Rev; 2022 Jan; ():1-28. PubMed ID: 35095355 [TBL] [Abstract][Full Text] [Related]
29. [Harvesting microalgae via flocculation: a review]. Wan C; Zhang X; Zhao X; Bai F Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):161-71. PubMed ID: 26062338 [TBL] [Abstract][Full Text] [Related]
30. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. Qin S; Wang K; Gao F; Ge B; Cui H; Li W Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):131. PubMed ID: 37644516 [TBL] [Abstract][Full Text] [Related]
31. Effect of pH on biomass production and carbohydrate accumulation of Chlorella vulgaris JSC-6 under autotrophic, mixotrophic, and photoheterotrophic cultivation. Cheng CL; Lo YC; Huang KL; Nagarajan D; Chen CY; Lee DJ; Chang JS Bioresour Technol; 2022 May; 351():127021. PubMed ID: 35306130 [TBL] [Abstract][Full Text] [Related]
32. Efficiency and biotechnological aspects of biogas production from microalgal substrates. Klassen V; Blifernez-Klassen O; Wobbe L; Schlüter A; Kruse O; Mussgnug JH J Biotechnol; 2016 Sep; 234():7-26. PubMed ID: 27449486 [TBL] [Abstract][Full Text] [Related]
33. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Tan JS; Lee SY; Chew KW; Lam MK; Lim JW; Ho SH; Show PL Bioengineered; 2020 Dec; 11(1):116-129. PubMed ID: 31909681 [TBL] [Abstract][Full Text] [Related]
34. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Venkata Subhash G; Rajvanshi M; Raja Krishna Kumar G; Shankar Sagaram U; Prasad V; Govindachary S; Dasgupta S Bioresour Technol; 2022 Jan; 343():126155. PubMed ID: 34673195 [TBL] [Abstract][Full Text] [Related]
35. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Min KH; Kim DH; Ki MR; Pack SP Bioresour Technol; 2022 Jan; 344(Pt B):126404. PubMed ID: 34826566 [TBL] [Abstract][Full Text] [Related]
36. Microalgal Biorefinery Concepts' Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Sivaramakrishnan R; Suresh S; Kanwal S; Ramadoss G; Ramprakash B; Incharoensakdi A Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269768 [TBL] [Abstract][Full Text] [Related]
37. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. Yao S; Lyu S; An Y; Lu J; Gjermansen C; Schramm A J Appl Microbiol; 2019 Feb; 126(2):359-368. PubMed ID: 30168644 [TBL] [Abstract][Full Text] [Related]
38. A multicriteria decision analysis for the evaluation of microalgal growth and harvesting. Unay E; Ozkaya B; Yoruklu HC Chemosphere; 2021 Sep; 279():130561. PubMed ID: 33892454 [TBL] [Abstract][Full Text] [Related]
39. Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: A review. Thanigaivel S; Vickram S; Manikandan S; Deena SR; Subbaiya R; Karmegam N; Govarthanan M; Kim W Bioresour Technol; 2022 Nov; 364():128057. PubMed ID: 36195218 [TBL] [Abstract][Full Text] [Related]
40. Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Maurya R; Paliwal C; Ghosh T; Pancha I; Chokshi K; Mitra M; Ghosh A; Mishra S Bioresour Technol; 2016 Aug; 214():787-796. PubMed ID: 27161655 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]