These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34826832)
1. Conjunction of gallium doping and calcium silicate mediates osteoblastic and osteoclastic performances of tricalcium phosphate bioceramics. He F; Qiu C; Lu T; Shi X; Ye J Biomed Mater; 2021 Dec; 17(1):. PubMed ID: 34826832 [TBL] [Abstract][Full Text] [Related]
2. Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics. Fei L; Wang C; Xue Y; Lin K; Chang J; Sun J J Biomed Mater Res B Appl Biomater; 2012 Jul; 100(5):1237-44. PubMed ID: 22454365 [TBL] [Abstract][Full Text] [Related]
3. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. Liu S; Jin F; Lin K; Lu J; Sun J; Chang J; Dai K; Fan C Biomed Mater; 2013 Apr; 8(2):025008. PubMed ID: 23428666 [TBL] [Abstract][Full Text] [Related]
4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
5. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
7. Characterization and properties of novel gallium-doped calcium phosphate ceramics. Mellier C; Fayon F; Schnitzler V; Deniard P; Allix M; Quillard S; Massiot D; Bouler JM; Bujoli B; Janvier P Inorg Chem; 2011 Sep; 50(17):8252-60. PubMed ID: 21793526 [TBL] [Abstract][Full Text] [Related]
8. Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Gallo M; Le Gars Santoni B; Douillard T; Zhang F; Gremillard L; Dolder S; Hofstetter W; Meille S; Bohner M; Chevalier J; Tadier S Acta Biomater; 2019 Apr; 89():391-402. PubMed ID: 30831328 [TBL] [Abstract][Full Text] [Related]
9. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839 [TBL] [Abstract][Full Text] [Related]
10. β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Tian Y; Lu T; He F; Xu Y; Shi H; Shi X; Zuo F; Wu S; Ye J Colloids Surf B Biointerfaces; 2018 Jul; 167():318-327. PubMed ID: 29679808 [TBL] [Abstract][Full Text] [Related]
11. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Huang Y; Wu C; Zhang X; Chang J; Dai K Acta Biomater; 2018 Jan; 66():81-92. PubMed ID: 28864248 [TBL] [Abstract][Full Text] [Related]
12. [Preliminary study of osteoblastic effect in different contents of calcium silicate bioceramics]. Fei LS; Sun J Shanghai Kou Qiang Yi Xue; 2011 Jun; 20(3):241-5. PubMed ID: 21779729 [TBL] [Abstract][Full Text] [Related]
13. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
14. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. Strazic Geljic I; Melis N; Boukhechba F; Schaub S; Mellier C; Janvier P; Laugier JP; Bouler JM; Verron E; Scimeca JC J Tissue Eng Regen Med; 2018 Feb; 12(2):e854-e866. PubMed ID: 28079305 [TBL] [Abstract][Full Text] [Related]
15. Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. Gomes S; Vichery C; Descamps S; Martinez H; Kaur A; Jacobs A; Nedelec JM; Renaudin G Acta Biomater; 2018 Jan; 65():462-474. PubMed ID: 29066420 [TBL] [Abstract][Full Text] [Related]
16. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Su CC; Kao CT; Hung CJ; Chen YJ; Huang TH; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():156-63. PubMed ID: 24582235 [TBL] [Abstract][Full Text] [Related]
17. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation. Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326 [TBL] [Abstract][Full Text] [Related]
18. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement. Kao CT; Huang TH; Chen YJ; Hung CJ; Lin CC; Shie MY Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():126-34. PubMed ID: 25175197 [TBL] [Abstract][Full Text] [Related]
19. Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Li J; Deng C; Liang W; Kang F; Bai Y; Ma B; Wu C; Dong S Bioact Mater; 2021 Nov; 6(11):3839-3850. PubMed ID: 33898880 [TBL] [Abstract][Full Text] [Related]
20. Tailoring the mechanical property and cell-biological response of β-tricalcium phosphate composite bioceramics by SrO-P He F; Lu T; Tian Y; Li X; Zuo F; Shi X; Ye J J Mech Behav Biomed Mater; 2018 Oct; 86():215-223. PubMed ID: 29986296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]