BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 34826922)

  • 21. Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery.
    Li XG; Gao Q; Jiang SQ; Nie CC; Zhu XN; Jiao TT
    J Environ Manage; 2023 Dec; 348():119288. PubMed ID: 37864943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology.
    Mishra S; Ghosh S; van Hullebusch ED; Singh S; Das AP
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7859-7888. PubMed ID: 36988841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards.
    Hubau A; Chagnes A; Minier M; Touzé S; Chapron S; Guezennec AG
    Waste Manag; 2019 May; 91():62-71. PubMed ID: 31203943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioleaching: urban mining option to curb the menace of E-waste challenge.
    Arya S; Kumar S
    Bioengineered; 2020 Jan; 11(1):640-660. PubMed ID: 32538256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
    Awasthi AK; Zlamparet GI; Zeng X; Li J
    Waste Manag Res; 2017 Apr; 35(4):346-356. PubMed ID: 28097947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.
    Rocchetti L; Vegliò F; Kopacek B; Beolchini F
    Environ Sci Technol; 2013 Feb; 47(3):1581-8. PubMed ID: 23323842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards.
    Li H; Oraby E; Eksteen J
    Waste Manag; 2021 Apr; 125():87-97. PubMed ID: 33684667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal bioleaching from printed circuit boards by bio-Fenton process: Optimization and prediction by response surface methodology and artificial intelligence models.
    Trivedi A; Hait S
    J Environ Manage; 2023 Jan; 326(Pt B):116797. PubMed ID: 36423410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to designing easily recyclable printed circuit boards.
    Khrustalev D; Tirzhanov A; Khrustaleva A; Mustafin M; Yedrissov A
    Sci Rep; 2022 Dec; 12(1):22199. PubMed ID: 36564465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of metals from metal-rich particles of crushed waste printed circuit boards by low-pressure filtration.
    Meng L; Guo L; Guo Z
    Waste Manag; 2019 Feb; 84():227-234. PubMed ID: 30691897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of valuable metals from spent mobile phone printed circuit boards using biochar in indirect bioleaching.
    Kadivar S; Pourhossein F; Mousavi SM
    J Environ Manage; 2021 Feb; 280():111642. PubMed ID: 33293166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.
    Wang S; Zheng Y; Yan W; Chen L; Dummi Mahadevan G; Zhao F
    J Hazard Mater; 2016 Dec; 320():393-400. PubMed ID: 27585271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The brighter side of e-waste-a rich secondary source of metal.
    Tipre DR; Khatri BR; Thacker SC; Dave SR
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):10503-10518. PubMed ID: 33438127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative bioleaching of metals from pulverized and non-pulverized PCBs of cell phone charger: advantages of non-pulverized PCBs.
    Joshi V; Shah N; Wakte P; Dhakephalkar P; Dhakephalkar A; Khobragade R; Naphade B; Shaikh S; Deshmukh A; Adhapure N
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28277-28286. PubMed ID: 29177777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture.
    Xia MC; Wang YP; Peng TJ; Shen L; Yu RL; Liu YD; Chen M; Li JK; Wu XL; Zeng WM
    J Biosci Bioeng; 2017 Jun; 123(6):714-721. PubMed ID: 28319019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method.
    Wang L; Li Q; Li Y; Sun X; Li J; Shen J; Han W; Wang L
    Waste Manag; 2018 Jan; 71():411-419. PubMed ID: 29030122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneously enhanced Cu bioleaching from E-wastes and recovered Cu ions by direct current electric field in a bioelectrical reactor.
    Wei X; Liu D; Huang W; Huang W; Lei Z
    Bioresour Technol; 2020 Feb; 298():122566. PubMed ID: 31848043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery.
    Adhapure NN; Dhakephalkar PK; Dhakephalkar AP; Tembhurkar VR; Rajgure AV; Deshmukh AM
    MethodsX; 2014; 1():181-6. PubMed ID: 26150951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.