These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 34826922)

  • 41. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biotechnological recycling of hazardous waste PCBs using Sulfobacillus thermosulfidooxidans through pretreatment of toxicant metals: Process optimization and kinetic studies.
    Ilyas S; Srivastava RR; Kim H; Ilyas N
    Chemosphere; 2022 Jan; 286(Pt 3):131978. PubMed ID: 34426287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED).
    Pourhossein F; Mousavi SM
    J Hazard Mater; 2019 Oct; 378():120648. PubMed ID: 31203122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.
    Chen S; Yang Y; Liu C; Dong F; Liu B
    Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces.
    Jadhav U; Hocheng H
    Sci Rep; 2015 Sep; 5():14574. PubMed ID: 26415827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reverse flotation efficiency and mechanism of various collectors for recycling waste printed circuit boards.
    Yao Y; Bai Q; He J; Zhu L; Zhou K; Zhao Y
    Waste Manag; 2020 Feb; 103():218-227. PubMed ID: 31901604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel method for the removal of epoxy coating from waste printed circuit board.
    Senophiyah-Mary J; Loganath R; Meenambal T
    Waste Manag Res; 2018 Jul; 36(7):645-652. PubMed ID: 29925298
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechano-microbial systems: An ecofriendly approach for copper bioleaching from waste printed circuit board.
    Awasthi AK; Li J
    Waste Manag Res; 2019 Jun; 37(6):656-661. PubMed ID: 30774003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring bioleaching potential of indigenous
    Thakur P; Kumar S
    Waste Manag Res; 2023 Jul; 41(7):1255-1266. PubMed ID: 37293749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of silver halos by Sphingomonas paucimobilis MX8 and its bioleaching of silver from computer keyboard printed circuit boards.
    Argumedo-Delira R; Díaz-Martinez ME; Martínez MJG
    Braz J Microbiol; 2023 Sep; 54(3):1689-1693. PubMed ID: 37171535
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Microorganisms used for bioleaching of metals from typical solid wastes and their leaching mechanism: a review].
    Jia R; Gu W; Zhao J; BAl J
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):1040-1055. PubMed ID: 36994570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Concepts of circular economy for sustainable management of electronic wastes: challenges and management options.
    Srivastav AL; Markandeya ; Patel N; Pandey M; Pandey AK; Dubey AK; Kumar A; Bhardwaj AK; Chaudhary VK
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):48654-48675. PubMed ID: 36849690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors.
    Tapia J; Dueñas A; Cheje N; Soclle G; Patiño N; Ancalla W; Tenorio S; Denos J; Taco H; Cao W; Alexandrino DAM; Jia Z; Vasconcelos V; Carvalho MF; Lazarte A
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biofilm for leaching precious metals from waste printed circuit boards using biocyanidation technology.
    Hu J; Tang Y; Ai F; Lin M; Ruan J
    J Hazard Mater; 2021 Feb; 403():123586. PubMed ID: 32795820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recycle technology for recovering resources and products from waste printed circuit boards.
    Li J; Lu H; Guo J; Xu Z; Zhou Y
    Environ Sci Technol; 2007 Mar; 41(6):1995-2000. PubMed ID: 17410796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.