These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34827589)

  • 1. Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts.
    Srivastava P; Bej S; Yordanova K; Wolkenhauer O
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting adverse drug events from clinical Notes: A systematic review of approaches used.
    Modi S; Kasmiran KA; Mohd Sharef N; Sharum MY
    J Biomed Inform; 2024 Mar; 151():104603. PubMed ID: 38331081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Past and future uses of text mining in ecology and evolution.
    Farrell MJ; Brierley L; Willoughby A; Yates A; Mideo N
    Proc Biol Sci; 2022 May; 289(1975):20212721. PubMed ID: 35582795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Complete Process of Text Classification System Using State-of-the-Art NLP Models.
    Dogra V; Verma S; Kavita ; Chatterjee P; Shafi J; Choi J; Ijaz MF
    Comput Intell Neurosci; 2022; 2022():1883698. PubMed ID: 35720939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Text Mining and Machine Learning Protocol for Extracting Human-Related Protein Phosphorylation Information from PubMed.
    Arumugam K; Shanker RR
    Methods Mol Biol; 2022; 2496():159-177. PubMed ID: 35713864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
    Le Glaz A; Haralambous Y; Kim-Dufor DH; Lenca P; Billot R; Ryan TC; Marsh J; DeVylder J; Walter M; Berrouiguet S; Lemey C
    J Med Internet Res; 2021 May; 23(5):e15708. PubMed ID: 33944788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.
    Han X; Kim JJ; Kwoh CK
    J Biomed Semantics; 2016; 7():22. PubMed ID: 27127603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large language model based framework for automated extraction of genetic interactions from unstructured data.
    Gill JK; Chetty M; Lim S; Hallinan J
    PLoS One; 2024; 19(5):e0303231. PubMed ID: 38771886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug-Drug Interaction Extraction via Convolutional Neural Networks.
    Liu S; Tang B; Chen Q; Wang X
    Comput Math Methods Med; 2016; 2016():6918381. PubMed ID: 26941831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Europe PMC annotated full-text corpus for gene/proteins, diseases and organisms.
    Yang X; Saha S; Venkatesan A; Tirunagari S; Vartak V; McEntyre J
    Sci Data; 2023 Oct; 10(1):722. PubMed ID: 37857688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent neural networks with segment attention and entity description for relation extraction from clinical texts.
    Li Z; Yang J; Gou X; Qi X
    Artif Intell Med; 2019 Jun; 97():9-18. PubMed ID: 31202398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of a high throughput natural language processing architecture to convert all clinical documents in a clinical data warehouse into standardized medical vocabularies.
    Afshar M; Dligach D; Sharma B; Cai X; Boyda J; Birch S; Valdez D; Zelisko S; Joyce C; Modave F; Price R
    J Am Med Inform Assoc; 2019 Nov; 26(11):1364-1369. PubMed ID: 31145455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The changing landscape of text mining: a review of approaches for ecology and evolution.
    Farrell MJ; Le Guillarme N; Brierley L; Hunter B; Scheepens D; Willoughby A; Yates A; Mideo N
    Proc Biol Sci; 2024 Jul; 291(2027):20240423. PubMed ID: 39082244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocabulary Matters: An Annotation Pipeline and Four Deep Learning Algorithms for Enzyme Named Entity Recognition.
    Wang M; Vijayaraghavan A; Beck T; Posma JM
    J Proteome Res; 2024 Jun; 23(6):1915-1925. PubMed ID: 38733346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.