These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34828174)

  • 1. Collisions of Two-Phase Liquid Droplets in a Heated Gas Medium.
    Tkachenko P; Shlegel N; Strizhak P
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence of Binary Droplets in the Transformer Oil Based on Small Amounts of Polymer: Effects of Initial Droplet Diameter and Collision Parameter.
    Wang Y; Qian L; Chen Z; Zhou F
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32917051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Transition Rates of Coalescence Events during Double Phase Separation in Microgravity.
    Oprisan A; Garrabos Y; Lecoutre C; Beysens D
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28684705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-Vapor Mixture Temperature in the Near-Surface Layer of a Rapidly-Evaporating Water Droplet.
    Antonov D; Volkov R; Strizhak P
    Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic diffusion interactions and coarsening in a system of droplets growing from a supersaturated gas mixture.
    Pines V; Zlatkowski M; Chait A
    J Chem Phys; 2005 Jan; 122(3):34702. PubMed ID: 15740212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile-surface bubbles and droplets coalesce faster but bounce stronger.
    Vakarelski IU; Yang F; Tian YS; Li EQ; Chan DYC; Thoroddsen ST
    Sci Adv; 2019 Oct; 5(10):eaaw4292. PubMed ID: 31692762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature.
    GarcĂ­a-Alfonso E; Ancilotto F; Barranco M; Pi M; Halberstadt N
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37602801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Numerical Investigation on the Collision Behavior of Unequal-Sized Micro-Nano Droplets.
    Qian L; Liu J; Cong H; Zhou F; Bao F
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.
    Yi N; Huang B; Dong L; Quan X; Hong F; Tao P; Song C; Shang W; Deng T
    Sci Rep; 2014 Mar; 4():4303. PubMed ID: 24603362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating.
    Pathak B; Basu S
    Phys Rev E; 2016 Mar; 93(3):033103. PubMed ID: 27078443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-Rising Bubbles Bounce More Strongly from Mobile than from Immobile Water-Air Interfaces.
    Vakarelski IU; Yang F; Thoroddsen ST
    Langmuir; 2020 Jun; 36(21):5908-5918. PubMed ID: 32380834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles.
    Liang Ling WY; Ng TW; Neild A; Zheng Q
    J Colloid Interface Sci; 2011 Feb; 354(2):832-42. PubMed ID: 21146828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodisperse, submicrometer droplets via condensation of microfluidic-generated gas bubbles.
    Seo M; Matsuura N
    Small; 2012 Sep; 8(17):2704-14. PubMed ID: 22700364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leidenfrost droplet jet engine by bubble ejection.
    Lin Y; Wu X; Hu Z; Chu F
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):112-120. PubMed ID: 37399747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary droplet collision at high Weber number.
    Pan KL; Chou PC; Tseng YJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036301. PubMed ID: 19905206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel.
    Takahashi K; Sugii Y; Mawatari K; Kitamori T
    Lab Chip; 2011 Sep; 11(18):3098-105. PubMed ID: 21826292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnucleation droplet growth in supersaturated gas with arbitrary vapor concentration.
    Pines V; Zlatkowski M; Chait A
    J Chem Phys; 2004 Jun; 120(22):10455-69. PubMed ID: 15268074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum and molecular-dynamics simulation of nanodroplet collisions.
    Bardia R; Liang Z; Keblinski P; Trujillo MF
    Phys Rev E; 2016 May; 93(5):053104. PubMed ID: 27300975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric sampling of a liquid surface by nanoliter droplet generation from bursting bubbles and focused acoustic pulses: application to studies of interfacial chemistry.
    Thomas DA; Wang L; Goh B; Kim ES; Beauchamp JL
    Anal Chem; 2015 Mar; 87(6):3336-44. PubMed ID: 25699657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of a wetting layer and Marangoni convection in microgravity.
    Oprisan A; Hegseth JJ; Smith GM; Lecoutre C; Garrabos Y; Beysens DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021202. PubMed ID: 21928983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.