These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 34828181)
41. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation. Dorosz P; Wojcieszak P; Malecha Z Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265145 [TBL] [Abstract][Full Text] [Related]
42. Thermoeconomic analysis of a combined supercritical CO Ochoa GV; Forero JD; Rojas JP Heliyon; 2022 Dec; 8(12):e12230. PubMed ID: 36582691 [TBL] [Abstract][Full Text] [Related]
43. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498 [TBL] [Abstract][Full Text] [Related]
44. The Use of Organic Rankine Cycles for Recovering the Heat Lost in the Compression Area of a Cryogenic Air Separation Unit. Ionita C; Bucsa S; Serban A; Dobre C; Dobrovicescu A Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741469 [TBL] [Abstract][Full Text] [Related]
45. Advanced exergoenvironmental and thermo-sustainability evaluation of cement plant, splitting the environmental impact into endogenous and exogenous parts: a case study. Odeh E; Ikpe I; Abam F Environ Sci Pollut Res Int; 2023 Sep; 30(42):96441-96461. PubMed ID: 37572260 [TBL] [Abstract][Full Text] [Related]
46. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant. Elmorsy L; Morosuk T; Tsatsaronis G Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428 [TBL] [Abstract][Full Text] [Related]
47. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820 [TBL] [Abstract][Full Text] [Related]
48. Evolution, status, and trends of exergy research: a systematic analysis during 1997-2020. Zhang P; Jin Q Environ Sci Pollut Res Int; 2022 Oct; 29(49):73769-73794. PubMed ID: 36094710 [TBL] [Abstract][Full Text] [Related]
49. Energo- and exergo-technical assessment of ground-source heat pump systems for geothermal energy production from underground mines. Amiri L; Madadian E; Hassani FP Environ Technol; 2019 Nov; 40(27):3534-3546. PubMed ID: 29806558 [TBL] [Abstract][Full Text] [Related]
50. Performance Analysis and Optimization of a Series Heat Exchangers Organic Rankine Cycle Utilizing Multi-Heat Sources from a Marine Diesel Engine. Li Y; Tang T Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356447 [TBL] [Abstract][Full Text] [Related]
51. Thermal and environmental optimization of an intercooled gas turbine toward a sustainable environment. Candra O; Ali A; Askar S; S Bhat R; Abdullaev SS; Shahab S; Firas Abdulameer S; Hussien BM; Alsalamy AH; Nomani MZM Chemosphere; 2023 Oct; 339():139624. PubMed ID: 37516320 [TBL] [Abstract][Full Text] [Related]
52. Combined heat and power plant using a multi-objective Henry gas solubility optimization algorithm: A thermodynamic investigation of energy, exergy, and economic (3E) analysis. Sukpancharoen S; Prasartkaew B Heliyon; 2021 Sep; 7(9):e08003. PubMed ID: 34622043 [TBL] [Abstract][Full Text] [Related]
53. Energy, Exergy, Exergoeconomic, and environmental (4E) analyses of thermal power plants for municipal solid waste to energy application in Bangladesh. Adnan A; Mahmud S; Uddin MR; Modi A; Ehsan MM; Salehin S Waste Manag; 2021 Oct; 134():136-148. PubMed ID: 34419701 [TBL] [Abstract][Full Text] [Related]
54. Exergy-economic assessment of a hybrid power, cooling and heating generation system based on SOFC. Zahedi R; Forootan MM; Ahmadi R; Keshavarzzadeh M Heliyon; 2023 May; 9(5):e16164. PubMed ID: 37305502 [TBL] [Abstract][Full Text] [Related]
55. Investigation and thermodynamic analysis of hydrogen liquefaction cycles: Energy and exergy study. Mahboobtosi M; D Ganji D; Gorji M; Hosseinzadeh K Heliyon; 2024 Sep; 10(18):e37570. PubMed ID: 39315147 [TBL] [Abstract][Full Text] [Related]
56. Multidisiplinary design optimization of a power generation system based on waste energy recovery from an internal combustion engine using organic Rankine cycle and thermoelectric generator. Chammam A; Tripathi AK; Aslla-Quispe AP; Huamán-Romaní YL; Abdullaev SS; Hussien NA; Alkhayyat A; Alsalamy AH; Pant R Chemosphere; 2023 Nov; 340():139876. PubMed ID: 37604339 [TBL] [Abstract][Full Text] [Related]
57. "3E" Analysis and Working Fluid Selection for a Cogeneration System for Geothermal Large Temperature Difference Utilization. Yin J; Zhu B; Zhang Y; Huang J ACS Omega; 2024 Apr; 9(14):16221-16236. PubMed ID: 38617693 [TBL] [Abstract][Full Text] [Related]
58. Assessing sustainable operational conditions of a bottoming organic Rankine cycle using zeotropic mixtures: An energy-emergy approach. Ochoa GV; Caballero AP; Castilla DV Heliyon; 2023 Jan; 9(1):e12521. PubMed ID: 36820171 [TBL] [Abstract][Full Text] [Related]
59. Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network. Musharavati F; Khoshnevisan A; Alirahmi SM; Ahmadi P; Khanmohammadi S Chemosphere; 2022 Jan; 287(Pt 2):131980. PubMed ID: 34509018 [TBL] [Abstract][Full Text] [Related]
60. Analysis of Different Organic Rankine and Kalina Cycles for Waste Heat Recovery in the Iron and Steel Industry. Atashbozorg D; Arasteh AM; Salehi G; Azad MT ACS Omega; 2022 Dec; 7(50):46099-46117. PubMed ID: 36570319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]