These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 34828270)
1. The Kim NS; Kim SJ; Jo JS; Lee JG; Lee SI; Kim DH; Kim JA Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828270 [TBL] [Abstract][Full Text] [Related]
2. Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Kim JA; Jung HE; Hong JK; Hermand V; Robertson McClung C; Lee YH; Kim JY; Lee SI; Jeong MJ; Kim J; Yun D; Kim W Plant Cell Rep; 2016 Sep; 35(9):1943-54. PubMed ID: 27295265 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Nugroho ABD; Han N; Pervitasari AN; Kim DH; Kim J Plant Mol Biol; 2020 Jan; 102(1-2):171-184. PubMed ID: 31792713 [TBL] [Abstract][Full Text] [Related]
4. Expansion of the circadian transcriptome in Greenham K; Sartor RC; Zorich S; Lou P; Mockler TC; McClung CR Elife; 2020 Sep; 9():. PubMed ID: 32996462 [TBL] [Abstract][Full Text] [Related]
5. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053 [TBL] [Abstract][Full Text] [Related]
6. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Seo MS; Jin M; Chun JH; Kim SJ; Park BS; Shon SH; Kim JS Plant Mol Biol; 2016 Mar; 90(4-5):503-16. PubMed ID: 26820138 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Eom SH; Baek SA; Kim JK; Hyun TK Molecules; 2018 May; 23(5):. PubMed ID: 29762546 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of the callose enzyme families of fertile and sterile flower buds of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). Pu Y; Hou L; Guo Y; Ullah I; Yang Y; Yue Y FEBS Open Bio; 2019 Aug; 9(8):1432-1449. PubMed ID: 31168951 [TBL] [Abstract][Full Text] [Related]
10. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Kim YB; Chun JH; Kim HR; Kim SJ; Lim YP; Park SU Nat Prod Commun; 2014 Apr; 9(4):533-7. PubMed ID: 24868877 [TBL] [Abstract][Full Text] [Related]
11. Identification and Characterization of Kim NS; Yu J; Bae S; Kim HS; Park S; Lee K; Lee SI; Kim JA Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806003 [TBL] [Abstract][Full Text] [Related]
12. Metabolite Profiling and Comparative Metabolomics Analysis of Jiaozhou Chinese Cabbage ( Li J; Qiu M; Ritonga FN; Wang F; Zhou D; Li C; Li H; Zhang Y; Gao J Front Biosci (Landmark Ed); 2023 Dec; 28(12):345. PubMed ID: 38179748 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. Baskar V; Park SW C R Biol; 2015 Jul; 338(7):434-42. PubMed ID: 26043798 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Wang F; Qiu N; Ding Q; Li J; Zhang Y; Li H; Gao J BMC Genomics; 2014 Sep; 15(1):807. PubMed ID: 25242257 [TBL] [Abstract][Full Text] [Related]
15. Glutamic Acid and Poly-γ-glutamic Acid Enhanced the Heat Resistance of Chinese Cabbage ( Quan J; Zheng W; Tan J; Li Z; Wu M; Hong SB; Zhao Y; Zhu Z; Zang Y Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232971 [TBL] [Abstract][Full Text] [Related]
16. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Wiesner M; Schreiner M; Zrenner R BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080 [TBL] [Abstract][Full Text] [Related]
17. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Wang Y; Wu F; Bai J; He Y Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584 [TBL] [Abstract][Full Text] [Related]
18. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. Dai Y; Sun X; Wang C; Li F; Zhang S; Zhang H; Li G; Yuan L; Chen G; Sun R; Zhang S BMC Genomics; 2021 Apr; 22(1):236. PubMed ID: 33823810 [TBL] [Abstract][Full Text] [Related]
19. Metabolic Profiling in Chinese Cabbage (Brassica rapa L. subsp. pekinensis) Cultivars Reveals that Glucosinolate Content Is Correlated with Carotenoid Content. Baek SA; Jung YH; Lim SH; Park SU; Kim JK J Agric Food Chem; 2016 Jun; 64(21):4426-34. PubMed ID: 27172980 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa. Miao L; Lv Y; Kong L; Chen Q; Chen C; Li J; Zeng F; Wang S; Li J; Huang L; Cao J; Yu X BMC Genomics; 2018 Mar; 19(1):174. PubMed ID: 29499648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]