BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 34828354)

  • 1. Characterization of YABBY transcription factors in Osmanthus fragrans and functional analysis of OfYABBY12 in floral scent formation and leaf morphology.
    Shi T; Zhou L; Ye Y; Yang X; Wang L; Yue Y
    BMC Plant Biol; 2024 Jun; 24(1):589. PubMed ID: 38902627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-responsive module of OfAP1 and OfLFY regulates floral transition and floral organ identity in Osmanthus fragrans.
    Liu X; Wang Q; Jiang G; Wan Q; Dong B; Lu M; Deng J; Zhong S; Wang Y; Khan IA; Xiao Z; Fang Q; Zhao H
    Plant Physiol Biochem; 2023 Oct; 203():108076. PubMed ID: 37832366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif.
    Berbel A; Navarro C; Ferrándiz C; Cañas LA; Beltrán JP; Madueño F
    Plant Physiol; 2005 Sep; 139(1):174-85. PubMed ID: 16113230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta.
    Ai Y; Zhang C; Sun Y; Wang W; He Y; Bao M
    PLoS One; 2017; 12(1):e0169777. PubMed ID: 28081202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "The usual suspects"- analysis of transcriptome sequences reveals deviating B gene activity in C. vulgaris bud bloomers.
    Behrend A; Borchert T; Hohe A
    BMC Plant Biol; 2015 Jan; 15():8. PubMed ID: 25604890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae): morphological and molecular analyses of flower organ identity.
    Borchert T; Eckardt K; Fuchs J; Krüger K; Hohe A
    BMC Plant Biol; 2009 Dec; 9():148. PubMed ID: 20003430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans.
    Qiu H; Chen Y; Fu J; Zhang C
    Genes Genomics; 2024 Apr; 46(4):399-408. PubMed ID: 38319456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes from the APETALA3 and PISTILLATA lineages are expressed in developing vascular bundles of the tuberous rhizome, flowering stem and flower Primordia of Eranthis hyemalis.
    Skipper M
    Ann Bot; 2002 Jan; 89(1):83-8. PubMed ID: 12096822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OfBFT genes play an essential role in the proliferate flower formation of Osmanthus fragrans.
    Wang Q; Chen X; Liu X; Gao G; Dong B; Wang Y; Zhong S; Deng J; Fang Q; Zhao H
    Plant Physiol Biochem; 2024 Mar; 208():108463. PubMed ID: 38442625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Cloning, Characterization, and Expression of
    Wei J; Liu D; Liu G; Tang J; Chen Y
    Front Plant Sci; 2016; 7():1758. PubMed ID: 27965680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral Volatile Organic Compounds Change the Composition and Function of the Endophytic Fungal Community in the Flowers of
    Shi T; Shi M; Ye Y; Yue Y; Wang L; Yang X
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete mitochondrial genome of
    Wang Z; Zhang R
    Mitochondrial DNA B Resour; 2021 Jun; 6(7):2056-2057. PubMed ID: 34212096
    [No Abstract]   [Full Text] [Related]  

  • 13. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution.
    Chen H; Zeng X; Yang J; Cai X; Shi Y; Zheng R; Wang Z; Liu J; Yi X; Xiao S; Fu Q; Zou J; Wang C
    Hortic Res; 2021 May; 8(1):98. PubMed ID: 33931610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic expression of the
    Yao JL; Xu J; Tomes S; Cui W; Luo Z; Deng C; Ireland HS; Schaffer RJ; Gleave AP
    Plant Direct; 2018 Apr; 2(4):e00051. PubMed ID: 31245717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of axillary bud growth in tobacco through toxin gene expression system.
    Lv J; Chen YQ; Ding AM; Lei B; Yu J; Gao XM; Dai CB; Sun YH
    Sci Rep; 2021 Sep; 11(1):17513. PubMed ID: 34471163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene.
    Castric V; Batista RA; Carré A; Mousavi S; Mazoyer C; Godé C; Gallina S; Ponitzki C; Theron A; Bellec A; Marande W; Santoni S; Mariotti R; Rubini A; Legrand S; Billiard S; Vekemans X; Vernet P; Saumitou-Laprade P
    Curr Biol; 2024 May; 34(9):1967-1976.e6. PubMed ID: 38626763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics analyses provide insights into the genomic basis of differentiation among four sweet osmanthus groups.
    Li Y; Zhao H; Xia HX; Huang J; Ma N; Guo P; Liu YP; Liu HL; Wang YH; Lin N; Shang FD
    Plant Physiol; 2024 May; ():. PubMed ID: 38753307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new mechanism of flowering regulation by the competition of isoforms in Osmanthus fragrans.
    Li Y; Xia HX; Cushman SA; Zhao H; Guo P; Liu YP; Lin N; Shang FD
    Ann Bot; 2023 Dec; 132(6):1089-1102. PubMed ID: 37666004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, Expression, and Tobacco Overexpression Analyses of a
    Zeng Z; Chen S; Xu M; Wang M; Chen Z; Wang L; Pang J
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828354
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.