These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34829049)

  • 21. Applicability of pepper mild mottle virus and cucumber green mottle mosaic virus as process indicators of enteric virus removal by membrane processes at a potable reuse facility.
    Yasui M; Iso H; Torii S; Matsui Y; Katayama H
    Water Res; 2021 Nov; 206():117735. PubMed ID: 34673461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of Membrane Processes for By-Product Valorization to Improve the Eco-Efficiency of Small/Medium Size Cheese Dairy Plants.
    Macedo A; Bilau J; Cambóias E; Duarte E
    Foods; 2021 Jul; 10(8):. PubMed ID: 34441518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads.
    Henning DR; Baer RJ; Hassan AN; Dave R
    J Dairy Sci; 2006 Apr; 89(4):1179-88. PubMed ID: 16537951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated ultrafiltration, nanofiltration, and reverse osmosis pilot process to produce bioactive protein/peptide fractions from sardine cooking effluent.
    Ghalamara S; Coscueta ER; Silva S; Brazinha C; Pereira CD; Pintado ME
    J Environ Manage; 2022 Sep; 317():115344. PubMed ID: 35642813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation.
    Asunis F; De Gioannis G; Dessì P; Isipato M; Lens PNL; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D
    J Environ Manage; 2020 Dec; 276():111240. PubMed ID: 32866754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse.
    Takeuchi H; Yamashita N; Nakada N; Tanaka H
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.
    Meneses YE; Flores RA
    J Dairy Sci; 2016 May; 99(5):3396-3407. PubMed ID: 26923044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy.
    Shehata N; Egirani D; Olabi AG; Inayat A; Abdelkareem MA; Chae KJ; Sayed ET
    Chemosphere; 2023 Apr; 320():137993. PubMed ID: 36720408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circular Economy Approach in Treatment of Galvanic Wastewater Employing Membrane Processes.
    Kowalik-Klimczak A; Gajewska-Midziałek A; Buczko Z; Łożyńska M; Życki M; Barszcz W; Ciciszwili T; Dąbrowski A; Kasierot S; Charasińska J; Gorewoda T
    Membranes (Basel); 2023 Mar; 13(3):. PubMed ID: 36984712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent developments of organic solvent resistant materials for membrane separations.
    Ren D; Ren S; Lin Y; Xu J; Wang X
    Chemosphere; 2021 May; 271():129425. PubMed ID: 33445020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane Technologies in Wine Industry: An Overview.
    El Rayess Y; Mietton-Peuchot M
    Crit Rev Food Sci Nutr; 2016 Sep; 56(12):2005-20. PubMed ID: 25751507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achieving very low mercury levels in refinery wastewater by membrane filtration.
    Urgun-Demirtas M; Benda PL; Gillenwater PS; Negri MC; Xiong H; Snyder SW
    J Hazard Mater; 2012 May; 215-216():98-107. PubMed ID: 22410725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whey protein membrane processing methods and membrane fouling mechanism analysis.
    Wen-Qiong W; Yun-Chao W; Xiao-Feng Z; Rui-Xia G; Mao-Lin L
    Food Chem; 2019 Aug; 289():468-481. PubMed ID: 30955638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review.
    Yaashikaa PR; Senthil Kumar P; Varjani S
    Bioresour Technol; 2022 Jan; 343():126126. PubMed ID: 34673193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products.
    Castro-Muñoz R; Conidi C; Cassano A
    Crit Rev Food Sci Nutr; 2019; 59(18):2927-2948. PubMed ID: 29787307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of membrane technologies in the pharmaceutical industry.
    Sirkar KK
    Curr Opin Drug Discov Devel; 2000 Nov; 3(6):714-22. PubMed ID: 19649899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating Pressure-Driven Membrane Separation Processes to Improve Eco-Efficiency in Cheese Manufacture: A Preliminary Case Study.
    Benoit S; Chamberland J; Doyen A; Margni M; Bouchard C; Pouliot Y
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33076420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications.
    Lappa IK; Papadaki A; Kachrimanidou V; Terpou A; Koulougliotis D; Eriotou E; Kopsahelis N
    Foods; 2019 Aug; 8(8):. PubMed ID: 31443236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles.
    Chen D; Sirkar KK; Jin C; Singh D; Pfeffer R
    Curr Pharm Des; 2017; 23(2):242-249. PubMed ID: 27784239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.