These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34829190)

  • 1. Sterol Composition Modulates the Response of
    Jordá T; Rozès N; Puig S
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Ergosterol Biosynthesis in
    Jordá T; Puig S
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32679672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency.
    Jordá T; Barba-Aliaga M; Rozès N; Alepuz P; Martínez-Pastor MT; Puig S
    Environ Microbiol; 2022 Nov; 24(11):5248-5260. PubMed ID: 36382795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast anaerobic response element AR1b regulates aerobic antifungal drug-dependent sterol gene expression.
    Gallo-Ebert C; Donigan M; Liu HY; Pascual F; Manners M; Pandya D; Swanson R; Gallagher D; Chen W; Carman GM; Nickels JT
    J Biol Chem; 2013 Dec; 288(49):35466-77. PubMed ID: 24163365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid composition of yeast cells modulates the response to iron deficiency.
    Jordá T; Romero AM; Perea-García A; Rozès N; Puig S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Aug; 1865(8):158707. PubMed ID: 32251724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways.
    Woods K; Höfken T
    Mol Microbiol; 2016 Feb; 99(3):512-27. PubMed ID: 26448198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular strategies to increase yeast iron accumulation and resistance.
    Ramos-Alonso L; Wittmaack N; Mulet I; Martínez-Garay CA; Fita-Torró J; Lozano MJ; Romero AM; García-Ferris C; Martínez-Pastor MT; Puig S
    Metallomics; 2018 Sep; 10(9):1245-1256. PubMed ID: 30137082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast mRNA-binding protein Cth2 post-transcriptionally modulates ergosterol biosynthesis in response to iron deficiency.
    Jordá T; Rozès N; Martínez-Pastor MT; Puig S
    Biochim Biophys Acta Gene Regul Mech; 2023 Sep; 1866(3):194959. PubMed ID: 37453649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.
    Martínez-Pastor MT; Perea-García A; Puig S
    World J Microbiol Biotechnol; 2017 Apr; 33(4):75. PubMed ID: 28315258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of yeast Erg1 expression and terbinafine susceptibility by iron bioavailability.
    Jordá T; Martínez-Martín A; Martínez-Pastor MT; Puig S
    Microb Biotechnol; 2022 Nov; 15(11):2705-2716. PubMed ID: 35837730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological implications of sterol biosynthesis in yeast.
    Parks LW; Casey WM
    Annu Rev Microbiol; 1995; 49():95-116. PubMed ID: 8561481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Sterol-Signaling Pathway Governs Azole Antifungal Drug Resistance and Hypoxic Gene Repression in
    Serratore ND; Baker KM; Macadlo LA; Gress AR; Powers BL; Atallah N; Westerhouse KM; Hall MC; Weake VM; Briggs SD
    Genetics; 2018 Mar; 208(3):1037-1055. PubMed ID: 29263028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of sterol uptake and transport in yeast.
    Jacquier N; Schneiter R
    J Steroid Biochem Mol Biol; 2012 Mar; 129(1-2):70-8. PubMed ID: 21145395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Regulatory Mechanisms in
    Ramos-Alonso L; Romero AM; Martínez-Pastor MT; Puig S
    Front Microbiol; 2020; 11():582830. PubMed ID: 33013818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses.
    Liu G; Chen Y; Færgeman NJ; Nielsen J
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28910986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae.
    Wiersma SJ; Mooiman C; Giera M; Pronk JT
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast sterols: yeast mutants as tools for the study of sterol metabolism.
    Parks LW; Bottema CD; Rodriguez RJ; Lewis TA
    Methods Enzymol; 1985; 111():333-46. PubMed ID: 3897776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical suppression of defects in mitotic spindle assembly, redox control, and sterol biosynthesis by hydroxyurea.
    McCulley A; Haarer B; Viggiano S; Karchin J; Feng W
    G3 (Bethesda); 2014 Jan; 4(1):39-48. PubMed ID: 24192836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sterol composition of a delta 5,7-sterol-rich strain of Saccharomyces cerevisiae during batch growth.
    Novotný C; Bĕhalová B; Struzinský R; Novák M; Zajícek J
    Folia Microbiol (Praha); 1988; 33(5):377-85. PubMed ID: 3060417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.