These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34829590)

  • 1. Antioxidative Responses of Duckweed (
    Radulović O; Stanković S; Stanojević O; Vujčić Z; Dojnov B; Trifunović-Momčilov M; Marković M
    Antioxidants (Basel); 2021 Oct; 10(11):. PubMed ID: 34829590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenol Removal Capacity of the Common Duckweed (
    Radulović O; Stanković S; Uzelac B; Tadić V; Trifunović-Momčilov M; Lozo J; Marković M
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32397144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure.
    Razinger J; Dermastia M; Drinovec L; Drobne D; Zrimec A; Koce JD
    Environ Sci Pollut Res Int; 2007 May; 14(3):194-201. PubMed ID: 17561779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.
    Ishizawa H; Kuroda M; Morikawa M; Ike M
    Plant Physiol Biochem; 2017 Sep; 118():667-673. PubMed ID: 28818809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Exogenous General Plant Growth Regulators on the Growth of the Duckweed
    Utami D; Kawahata A; Sugawara M; Jog RN; Miwa K; Morikawa M
    Front Chem; 2018; 6():251. PubMed ID: 30038905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa.
    Yamaga F; Washio K; Morikawa M
    Environ Sci Technol; 2010 Aug; 44(16):6470-4. PubMed ID: 20704249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lemna minor exposed to fluoranthene: growth, biochemical, physiological and histochemical changes.
    Zezulka S; Kummerová M; Babula P; Váňová L
    Aquat Toxicol; 2013 Sep; 140-141():37-47. PubMed ID: 23751793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L.
    Tkalec M; Malarić K; Pevalek-Kozlina B
    Sci Total Environ; 2007 Dec; 388(1-3):78-89. PubMed ID: 17825879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of Aquatic Plant Growth-Promoting Bacteria for the Floating Plant Duckweed (
    Makino A; Nakai R; Yoneda Y; Toyama T; Tanaka Y; Meng XY; Mori K; Ike M; Morikawa M; Kamagata Y; Tamaki H
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36013982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed
    Ishizawa H; Kuroda M; Morikawa M; Ike M
    Biotechnol Biofuels; 2017; 10():62. PubMed ID: 28293292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavone-associated resistance of two
    Lee G; Choi H; Joo Y; Kim SG
    Ecol Evol; 2022 Nov; 12(11):e9459. PubMed ID: 36415872
    [No Abstract]   [Full Text] [Related]  

  • 13. Bacterial Production of Indole Related Compounds Reveals Their Role in Association Between Duckweeds and Endophytes.
    Gilbert S; Xu J; Acosta K; Poulev A; Lebeis S; Lam E
    Front Chem; 2018; 6():265. PubMed ID: 30050896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor).
    Zhang T; Lu Q; Su C; Yang Y; Hu D; Xu Q
    Ecotoxicol Environ Saf; 2017 Sep; 143():46-56. PubMed ID: 28500894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere.
    Toyama T; Yu N; Kumada H; Sei K; Ike M; Fujita M
    J Biosci Bioeng; 2006 Apr; 101(4):346-53. PubMed ID: 16716944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between Lemna minor (common duckweed) and PFAS intermediates: Perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer sulfonate (6:2 FTSA).
    Zhang W; Liang Y
    Chemosphere; 2021 Aug; 276():130165. PubMed ID: 33714153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications.
    Van Hoeck A; Horemans N; Monsieurs P; Cao HX; Vandenhove H; Blust R
    Biotechnol Biofuels; 2015; 8():188. PubMed ID: 26609323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L.
    Horemans N; Van Hees M; Van Hoeck A; Saenen E; De Meutter T; Nauts R; Blust R; Vandenhove H
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():91-100. PubMed ID: 25073449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of antioxidant defences to Zn stress in three duckweed species.
    Uruç Parlak K; Demirezen Yilmaz D
    Ecotoxicol Environ Saf; 2012 Nov; 85():52-8. PubMed ID: 23009815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Plant-Associated
    Yoneda Y; Yamamoto K; Makino A; Tanaka Y; Meng XY; Hashimoto J; Shin-Ya K; Satoh N; Fujie M; Toyama T; Mori K; Ike M; Morikawa M; Kamagata Y; Tamaki H
    Microorganisms; 2021 May; 9(6):. PubMed ID: 34074043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.