BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34829869)

  • 21. A comprehensive evaluation of connectivity methods for L1000 data.
    Lin K; Li L; Dai Y; Wang H; Teng S; Bao X; Lu ZJ; Wang D
    Brief Bioinform; 2020 Dec; 21(6):2194-2205. PubMed ID: 31774912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5.
    Huang HN; Rajanbabu V; Pan CY; Chan YL; Hui CF; Chen JY; Wu CJ
    Biomaterials; 2011 Oct; 32(28):6804-14. PubMed ID: 21726898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathway analysis for drug repositioning based on public database mining.
    Pan Y; Cheng T; Wang Y; Bryant SH
    J Chem Inf Model; 2014 Feb; 54(2):407-18. PubMed ID: 24460210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action.
    van Heerden A; van Wyk R; Birkholtz LM
    Front Cell Infect Microbiol; 2021; 11():688256. PubMed ID: 34268139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico drug repositioning: from large-scale transcriptome data to therapeutics.
    Kwon OS; Kim W; Cha HJ; Lee H
    Arch Pharm Res; 2019 Oct; 42(10):879-889. PubMed ID: 31482491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome Scale-Differential Flux Analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection.
    Nanda P; Ghosh A
    PLoS Comput Biol; 2021 Apr; 17(4):e1008860. PubMed ID: 33835998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.
    Vargas DM; De Bastiani MA; Zimmer ER; Klamt F
    Alzheimers Res Ther; 2018 Jun; 10(1):59. PubMed ID: 29935546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells.
    Huang CH; Ciou JS; Chen ST; Kok VC; Chung Y; Tsai JJ; Kurubanjerdjit N; Huang CF; Ng KL
    PeerJ; 2016; 4():e2478. PubMed ID: 27703845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antiviral Activity of Belladonna During Japanese Encephalitis Virus Infection via Inhibition of Microglia Activation and Inflammation Leading to Neuronal Cell Survival.
    Kumar S; Maurya VK; Kabir R; Nayak D; Khurana A; Manchanda RK; Gadugu S; Shanker K; Saxena SK
    ACS Chem Neurosci; 2020 Nov; 11(21):3683-3696. PubMed ID: 33054164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional analyses of microbial metabolic networks reveal novel insights into genome-scale metabolic fluxes.
    Li G; Cao H; Xu Y
    Brief Bioinform; 2019 Jul; 20(4):1590-1603. PubMed ID: 29596572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets.
    Puniya BL; Kulshreshtha D; Verma SP; Kumar S; Ramachandran S
    Mol Biosyst; 2013 Nov; 9(11):2798-815. PubMed ID: 24056838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptomic and metabolic flux analyses reveal shift of metabolic patterns during rice grain development.
    Shen F; Wu X; Shi L; Zhang H; Chen Y; Qi X; Wang Z; Li X
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):47. PubMed ID: 29745852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA transcriptome profiling of mice brains infected with Japanese encephalitis virus by RNA sequencing.
    Li XF; Cao RB; Luo J; Fan JM; Wang JM; Zhang YP; Gu JY; Feng XL; Zhou B; Chen PY
    Infect Genet Evol; 2016 Apr; 39():249-257. PubMed ID: 26845346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Japanese encephalitis virus induces apoptosis by inhibiting Foxo signaling pathway.
    Guo F; Yu X; Xu A; Xu J; Wang Q; Guo Y; Wu X; Tang Y; Ding Z; Zhang Y; Gong T; Pan Z; Li S; Kong L
    Vet Microbiol; 2018 Jul; 220():73-82. PubMed ID: 29885805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity.
    Wang K; Sun J; Zhou S; Wan C; Qin S; Li C; He L; Yang L
    PLoS Comput Biol; 2013; 9(11):e1003315. PubMed ID: 24244130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Network-Based Drug Prediction in Thyroid Cancer.
    Xu X; Long H; Xi B; Ji B; Li Z; Dang Y; Jiang C; Yao Y; Yang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Integrated System Biology Approach Yields Drug Repositioning Candidates for the Treatment of Heart Failure.
    Yang G; Ma A; Qin ZS
    Front Genet; 2019; 10():916. PubMed ID: 31608126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Prognosis-Related Gene Expression Signature and Connectivity Map for Personalized Drug Repositioning in Multiple Myeloma.
    Zhu FX; He YC; Zhang JY; Wang HF; Zhong C; Wang XT
    Med Sci Monit; 2019 May; 25():3247-3255. PubMed ID: 31048671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic Analysis Suggests the M1 Polarization and Launch of Diverse Programmed Cell Death Pathways in Japanese Encephalitis Virus-Infected Macrophages.
    Wang ZY; Zhen ZD; Fan DY; Wang PG; An J
    Viruses; 2020 Mar; 12(3):. PubMed ID: 32213866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico prediction of chemical mechanism of action via an improved network-based inference method.
    Wu Z; Lu W; Wu D; Luo A; Bian H; Li J; Li W; Liu G; Huang J; Cheng F; Tang Y
    Br J Pharmacol; 2016 Dec; 173(23):3372-3385. PubMed ID: 27646592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.