BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34830087)

  • 1. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis.
    Adams J; Thornton BP; Tabernero L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VSpipe, an Integrated Resource for Virtual Screening and Hit Selection: Applications to Protein Tyrosine Phospahatase Inhibition.
    Álvarez-Carretero S; Pavlopoulou N; Adams J; Gilsenan J; Tabernero L
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29414924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.
    Machado LESF; Shen TL; Page R; Peti W
    J Biol Chem; 2017 May; 292(21):8786-8796. PubMed ID: 28389559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase.
    Critton DA; Tortajada A; Stetson G; Peti W; Page R
    Biochemistry; 2008 Dec; 47(50):13336-45. PubMed ID: 19053285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases.
    Chio CM; Yu X; Bishop AC
    Bioorg Med Chem; 2015 Jun; 23(12):2828-38. PubMed ID: 25828055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents.
    Muñoz JJ; Tárrega C; Blanco-Aparicio C; Pulido R
    Biochem J; 2003 May; 372(Pt 1):193-201. PubMed ID: 12583813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
    Zhang ZY
    Acc Chem Res; 2017 Jan; 50(1):122-129. PubMed ID: 27977138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP.
    Tárrega C; Blanco-Aparicio C; Muñoz JJ; Pulido R
    J Biol Chem; 2002 Jan; 277(4):2629-36. PubMed ID: 11711538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
    Pulido R; Zúñiga A; Ullrich A
    EMBO J; 1998 Dec; 17(24):7337-50. PubMed ID: 9857190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm.
    Zúñiga A; Torres J; Ubeda J; Pulido R
    J Biol Chem; 1999 Jul; 274(31):21900-7. PubMed ID: 10419510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allele-specific inhibitors of protein tyrosine phosphatases.
    Hoffman HE; Blair ER; Johndrow JE; Bishop AC
    J Am Chem Soc; 2005 Mar; 127(9):2824-5. PubMed ID: 15740097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition.
    Guo XL; Shen K; Wang F; Lawrence DS; Zhang ZY
    J Biol Chem; 2002 Oct; 277(43):41014-22. PubMed ID: 12193602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery.
    Elhassan RM; Hou X; Fang H
    Med Res Rev; 2022 May; 42(3):1064-1110. PubMed ID: 34791703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional studies of protein tyrosine phosphatases with chemical approaches.
    Zhang ZY
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):100-7. PubMed ID: 16226063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop.
    Critton DA; Tautz L; Page R
    J Mol Biol; 2011 Jan; 405(3):619-29. PubMed ID: 21094165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of inhibitor-sensitive protein tyrosine phosphatases via active-site mutations.
    Bishop AC; Zhang XY; Lone AM
    Methods; 2007 Jul; 42(3):278-88. PubMed ID: 17532515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
    Szedlacsek SE; Aricescu AR; Fulga TA; Renault L; Scheidig AJ
    J Mol Biol; 2001 Aug; 311(3):557-68. PubMed ID: 11493009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions.
    Reddy RH; Kim H; Cha S; Lee B; Kim YJ
    J Microbiol Biotechnol; 2017 May; 27(5):878-895. PubMed ID: 28238001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating virtual and biochemical screening for protein tyrosine phosphatase inhibitor discovery.
    Martin KR; Narang P; Medina-Franco JL; Meurice N; MacKeigan JP
    Methods; 2014 Jan; 65(2):219-28. PubMed ID: 23969317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.