These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34830124)

  • 41. Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp.
    Barriuso J; Pereyra MT; Lucas García JA; Megías M; Gutierrez Mañero FJ; Ramos B
    Microb Ecol; 2005 Jul; 50(1):82-9. PubMed ID: 16047098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables.
    Shahrajabian MH; Chaski C; Polyzos N; Petropoulos SA
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34067181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Root-associated microbes in sustainable agriculture: models, metabolites and mechanisms.
    Thomashow LS; Kwak YS; Weller DM
    Pest Manag Sci; 2019 Sep; 75(9):2360-2367. PubMed ID: 30868729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products.
    Vasseur-Coronado M; du Boulois HD; Pertot I; Puopolo G
    Microbiol Res; 2021 Apr; 245():126672. PubMed ID: 33418398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench.
    Carlson R; Tugizimana F; Steenkamp PA; Dubery IA; Hassen AI; Labuschagne N
    Microbiol Res; 2020 Feb; 232():126388. PubMed ID: 31865223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leveraging arsenic resistant plant growth-promoting rhizobacteria for arsenic abatement in crops.
    Kumar S; Choudhary AK; Suyal DC; Makarana G; Goel R
    J Hazard Mater; 2022 Mar; 425():127965. PubMed ID: 34894510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant Growth Promoting and Stress Mitigating Abilities of Soil Born Microorganisms.
    Ali S; Xie L
    Recent Pat Food Nutr Agric; 2020; 11(2):96-104. PubMed ID: 31113355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops.
    Nagrale DT; Chaurasia A; Kumar S; Gawande SP; Hiremani NS; Shankar R; Gokte-Narkhedkar N; Renu ; Prasad YG
    World J Microbiol Biotechnol; 2023 Feb; 39(4):100. PubMed ID: 36792799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.
    Ansari MW; Trivedi DK; Sahoo RK; Gill SS; Tuteja N
    Plant Physiol Biochem; 2013 Sep; 70():403-10. PubMed ID: 23831950
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants.
    Shahrajabian MH; Chaski C; Polyzos N; Tzortzakis N; Petropoulos SA
    Biomolecules; 2021 May; 11(6):. PubMed ID: 34072781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review.
    Chourasia KN; More SJ; Kumar A; Kumar D; Singh B; Bhardwaj V; Kumar A; Das SK; Singh RK; Zinta G; Tiwari RK; Lal MK
    Planta; 2022 Feb; 255(3):68. PubMed ID: 35169941
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria.
    He X; Xu M; Wei Q; Tang M; Guan L; Lou L; Xu X; Hu Z; Chen Y; Shen Z; Xia Y
    Ecotoxicol Environ Saf; 2020 Dec; 205():111333. PubMed ID: 32979802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience.
    Arif I; Batool M; Schenk PM
    Trends Biotechnol; 2020 Dec; 38(12):1385-1396. PubMed ID: 32451122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of abiotic stress tolerance in plants by endophytic microbes.
    Lata R; Chowdhury S; Gond SK; White JF
    Lett Appl Microbiol; 2018 Apr; 66(4):268-276. PubMed ID: 29359344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs.
    Khan N; Bano A; Rahman MA; Guo J; Kang Z; Babar MA
    Sci Rep; 2019 Feb; 9(1):2097. PubMed ID: 30765803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone.
    Dutta S; Podile AR
    Crit Rev Microbiol; 2010 Aug; 36(3):232-44. PubMed ID: 20635858
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The unseen rhizosphere root-soil-microbe interactions for crop production.
    Zhang R; Vivanco JM; Shen Q
    Curr Opin Microbiol; 2017 Jun; 37():8-14. PubMed ID: 28433932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat.
    Khalid A; Arshad M; Zahir ZA
    J Appl Microbiol; 2004; 96(3):473-80. PubMed ID: 14962127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development.
    Kumawat KC; Sharma B; Nagpal S; Kumar A; Tiwari S; Nair RM
    Front Plant Sci; 2022; 13():1101862. PubMed ID: 36714780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.