BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34830190)

  • 1. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress.
    Tong T; Li Q; Jiang W; Chen G; Xue D; Deng F; Zeng F; Chen ZH
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylglyoxal - a signaling molecule in plant abiotic stress responses.
    Mostofa MG; Ghosh A; Li ZG; Siddiqui MN; Fujita M; Tran LP
    Free Radic Biol Med; 2018 Jul; 122():96-109. PubMed ID: 29545071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-type calcium ATPases play important roles in biotic and abiotic stress signaling.
    Chandan K; Gupta M; Ahmad A; Sarwat M
    Planta; 2024 Jun; 260(2):37. PubMed ID: 38922354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants.
    Atif RM; Shahid L; Waqas M; Ali B; Rashid MAR; Azeem F; Nawaz MA; Wani SH; Chung G
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31653073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression.
    Reddy AS; Ali GS; Celesnik H; Day IS
    Plant Cell; 2011 Jun; 23(6):2010-32. PubMed ID: 21642548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice.
    Singh A; Kanwar P; Yadav AK; Mishra M; Jha SK; Baranwal V; Pandey A; Kapoor S; Tyagi AK; Pandey GK
    FEBS J; 2014 Feb; 281(3):894-915. PubMed ID: 24286292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution and interaction of 14-3-3 proteins with H+-ATPases in plant abiotic stresses.
    Jiang W; He J; Babla M; Wu T; Tong T; Riaz A; Zeng F; Qin Y; Chen G; Deng F; Chen ZH
    J Exp Bot; 2024 Feb; 75(3):689-707. PubMed ID: 37864845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organellar calcium signaling in plants: An update.
    Pirayesh N; Giridhar M; Ben Khedher A; Vothknecht UC; Chigri F
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(4):118948. PubMed ID: 33421535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulin-like proteins in plants.
    Mohanta TK; Kumar P; Bae H
    BMC Plant Biol; 2017 Feb; 17(1):38. PubMed ID: 28158973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avenues of the membrane transport system in adaptation of plants to abiotic stresses.
    Vishwakarma K; Mishra M; Patil G; Mulkey S; Ramawat N; Pratap Singh V; Deshmukh R; Kumar Tripathi D; Nguyen HT; Sharma S
    Crit Rev Biotechnol; 2019 Nov; 39(7):861-883. PubMed ID: 31362527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network.
    Tang RJ; Luan S
    Curr Opin Plant Biol; 2017 Oct; 39():97-105. PubMed ID: 28709026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling.
    Pittman JK; Hirschi KD
    Plant Biol (Stuttg); 2016 Sep; 18(5):741-9. PubMed ID: 27061644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters.
    Mao K; Yang J; Wang M; Liu H; Guo X; Zhao S; Dong Q; Ma F
    BMC Plant Biol; 2021 Feb; 21(1):81. PubMed ID: 33557757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Roles of CDPKs as a Convergence Point of Different Signaling Pathways in Maize Adaptation to Abiotic Stress.
    Du H; Chen J; Zhan H; Li S; Wang Y; Wang W; Hu X
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering plant resistance to abiotic stresses by the global calcium signal system.
    Hong-Bo S; Li-Ye C; Ming-An S; Shi-Qing L; Ji-Cheng Y
    Biotechnol Adv; 2008; 26(6):503-10. PubMed ID: 18775620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant abiotic stress response and nutrient use efficiency.
    Gong Z; Xiong L; Shi H; Yang S; Herrera-Estrella LR; Xu G; Chao DY; Li J; Wang PY; Qin F; Li J; Ding Y; Shi Y; Wang Y; Yang Y; Guo Y; Zhu JK
    Sci China Life Sci; 2020 May; 63(5):635-674. PubMed ID: 32246404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The
    Shi S; Li S; Asim M; Mao J; Xu D; Ullah Z; Liu G; Wang Q; Liu H
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29958430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca
    Lee HJ; Seo PJ
    Trends Plant Sci; 2021 Aug; 26(8):849-870. PubMed ID: 33706981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family.
    Chen F; Fasoli M; Tornielli GB; Dal Santo S; Pezzotti M; Zhang L; Cai B; Cheng ZM
    PLoS One; 2013; 8(12):e80818. PubMed ID: 24324631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation.
    Jha UC; Nayyar H; Jha R; Khurshid M; Zhou M; Mantri N; Siddique KHM
    BMC Plant Biol; 2020 Oct; 20(1):466. PubMed ID: 33046001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.