These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34830220)
1. Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons-A Review. Czaplicka N; Rogala A; Wysocka I Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830220 [TBL] [Abstract][Full Text] [Related]
2. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane. Carreño NL; Leite ER; Longo E; Lisboa-Filho PN; Valentini A; Probst LF; Schreiner WH J Nanosci Nanotechnol; 2002 Oct; 2(5):491-4. PubMed ID: 12908285 [TBL] [Abstract][Full Text] [Related]
3. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
4. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576 [TBL] [Abstract][Full Text] [Related]
5. CO Alabi WO Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203 [TBL] [Abstract][Full Text] [Related]
6. Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane. Wannakao S; Artrith N; Limtrakul J; Kolpak AM ChemSusChem; 2015 Aug; 8(16):2745-51. PubMed ID: 26219085 [TBL] [Abstract][Full Text] [Related]
7. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Fan MS; Abdullah AZ; Bhatia S ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096 [TBL] [Abstract][Full Text] [Related]
8. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
9. Nickel-based cerium zirconate inorganic complex structures for CO Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494 [TBL] [Abstract][Full Text] [Related]
10. The Influence of High-Energy Faceted TiO Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730 [TBL] [Abstract][Full Text] [Related]
11. Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products. Sutton D; Kelleher B; Doyle A; Ross JR Bioresour Technol; 2001 Nov; 80(2):111-6. PubMed ID: 11563700 [TBL] [Abstract][Full Text] [Related]
12. Dry Reforming of Methane over 5%Ni/Ce Smal E; Bespalko Y; Arapova M; Fedorova V; Valeev K; Eremeev N; Sadovskaya E; Krieger T; Glazneva T; Sadykov V; Simonov M Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298629 [TBL] [Abstract][Full Text] [Related]
13. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide. Hao ZP; Hu C; Jiang Z; Lu GQ J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662 [TBL] [Abstract][Full Text] [Related]
14. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
15. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2. Wang K; Li X; Ji S; Huang B; Li C ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151 [TBL] [Abstract][Full Text] [Related]
16. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Hunt ST; Nimmanwudipong T; Román-Leshkov Y Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729 [TBL] [Abstract][Full Text] [Related]
17. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures. Bedard J; Hong DY; Bhan A Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320 [TBL] [Abstract][Full Text] [Related]
18. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane. Aghamohammadi S; Haghighi M; Karimipour S J Nanosci Nanotechnol; 2013 Jul; 13(7):4872-82. PubMed ID: 23901507 [TBL] [Abstract][Full Text] [Related]
19. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810 [TBL] [Abstract][Full Text] [Related]
20. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds. Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]