BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34830292)

  • 1. Enhancement of Bone-Forming Ability on Beta-Tricalcium Phosphate by Modulating Cellular Senescence Mechanisms Using Senolytics.
    Wang X; Honda Y; Zhao J; Morikuni H; Nishiura A; Hashimoto Y; Matsumoto N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Senolytics ameliorate the failure of bone regeneration through the cell senescence-related inflammatory signalling pathway.
    Wang X; Zhou Y; Luo C; Zhao J; Ji Y; Wang Z; Zheng P; Li D; Shi Y; Nishiura A; Matsumoto N; Honda Y; Xu B; Huang F
    Biomed Pharmacother; 2024 Jun; 175():116606. PubMed ID: 38670048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmentation of Bone Regeneration by Depletion of Stress-Induced Senescent Cells Using Catechin and Senolytics.
    Honda Y; Huang A; Tanaka T; Han X; Gao B; Liu H; Wang X; Zhao J; Hashimoto Y; Yamamoto K; Matsumoto N; Baba S; Umeda M
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose Effects of Slow-Released Bone Morphogenetic Protein-2 Functionalized β-Tricalcium Phosphate in Repairing Critical-Sized Bone Defects.
    Wei L; Yu D; Wang M; Deng L; Wu G; Liu Y
    Tissue Eng Part A; 2020 Feb; 26(3-4):120-129. PubMed ID: 31436137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.
    Tripathi G; Sugiura Y; Tsuru K; Ishikawa K
    Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium aluminate, RGD-modified calcium aluminate, and beta-tricalcium phosphate implants in a calvarial defect.
    Miljkovic ND; Cooper GM; Hott SL; Disalle BF; Gawalt ES; Smith DM; McGowan K; Marra KG
    J Craniofac Surg; 2009 Sep; 20(5):1538-43. PubMed ID: 19816293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dasatinib plus quercetin attenuates some frailty characteristics in SAMP10 mice.
    Ota H; Kodama A
    Sci Rep; 2022 Feb; 12(1):2425. PubMed ID: 35165353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic research and clinical application of beta-tricalcium phosphate (β-TCP).
    Tanaka T; Komaki H; Chazono M; Kitasato S; Kakuta A; Akiyama S; Marumo K
    Morphologie; 2017 Sep; 101(334):164-172. PubMed ID: 28462796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culture of hybrid spheroids composed of calcium phosphate materials and mesenchymal stem cells on an oxygen-permeable culture device to predict in vivo bone forming capability.
    Sato T; Anada T; Hamai R; Shiwaku Y; Tsuchiya K; Sakai S; Baba K; Sasaki K; Suzuki O
    Acta Biomater; 2019 Apr; 88():477-490. PubMed ID: 30844570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model.
    Takeda Y; Honda Y; Kakinoki S; Yamaoka T; Baba S
    Dent Mater J; 2018 Jul; 37(4):575-581. PubMed ID: 29491202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment study of distal femur for parathyroid hormone (1-34) and β-tricalcium phosphate on bone formation in critical size defects in rats.
    Tao ZS; Qiang Z; Tu KK; Huang ZL; Xu HM; Sun T; Lv YX; Cui W; Yang L
    J Biomater Appl; 2015 Oct; 30(4):484-91. PubMed ID: 26116022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of varying the particle size of beta tricalcium phosphate carrier of recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects.
    Jung UW; Choi SY; Pang EK; Kim CS; Choi SH; Cho KS
    J Periodontol; 2006 May; 77(5):765-72. PubMed ID: 16671867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats.
    Tao ZS; Zhou WS; Xu HG; Yang M
    Biomed Pharmacother; 2020 Dec; 132():110911. PubMed ID: 33125972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Senolytic effects on dental pulp stem cell's proliferation and differentiation during long-term expansion].
    Wang GY; Liao L; Tian WD
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2024 May; 59(5):444-452. PubMed ID: 38636998
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP).
    de Freitas Silva L; de Carvalho Reis ENR; Barbara TA; Bonardi JP; Garcia IR; de Carvalho PSP; Ponzoni D
    Acta Histochem; 2017 Jul; 119(6):624-631. PubMed ID: 28732677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease.
    Hickson LJ; Langhi Prata LGP; Bobart SA; Evans TK; Giorgadze N; Hashmi SK; Herrmann SM; Jensen MD; Jia Q; Jordan KL; Kellogg TA; Khosla S; Koerber DM; Lagnado AB; Lawson DK; LeBrasseur NK; Lerman LO; McDonald KM; McKenzie TJ; Passos JF; Pignolo RJ; Pirtskhalava T; Saadiq IM; Schaefer KK; Textor SC; Victorelli SG; Volkman TL; Xue A; Wentworth MA; Wissler Gerdes EO; Zhu Y; Tchkonia T; Kirkland JL
    EBioMedicine; 2019 Sep; 47():446-456. PubMed ID: 31542391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis.
    Xing X; Tang Q; Zou J; Huang H; Yang J; Gao X; Xu X; Ma S; Li M; Liang C; Tan L; Liao L; Tian W
    Acta Biomater; 2023 Feb; 157():352-366. PubMed ID: 36470392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.