These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 34830298)
1. A Systematic Approach to the Development of Cilostazol Nanosuspension by Liquid Antisolvent Precipitation (LASP) and Its Combination with Ultrasound. Jakubowska E; Milanowski B; Lulek J Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830298 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039 [TBL] [Abstract][Full Text] [Related]
3. Preparation and Characterization of Stable Nanosuspension for Dissolution Rate Enhancement of Furosemide: A Quality by Design (QbD) Approach. Marzan AL; Tabassum R; Jahan B; Asif MH; Reza HM; Kazi M; Alshehri SM; de Matas M; Shariare MH Curr Drug Deliv; 2018; 15(5):672-685. PubMed ID: 29359667 [TBL] [Abstract][Full Text] [Related]
4. Investigation of nanosized crystalline form to improve the oral bioavailability of poorly water soluble cilostazol. Miao X; Sun C; Jiang T; Zheng L; Wang T; Wang S J Pharm Pharm Sci; 2011; 14(2):196-214. PubMed ID: 21733409 [TBL] [Abstract][Full Text] [Related]
5. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Alshweiat A; Katona G; Csóka I; Ambrus R Eur J Pharm Sci; 2018 Sep; 122():94-104. PubMed ID: 29908301 [TBL] [Abstract][Full Text] [Related]
6. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Gajera BY; Shah DA; Dave RH Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724 [TBL] [Abstract][Full Text] [Related]
7. Continuous production of aqueous suspensions of ultra-fine particles of curcumin using ultrasonically driven mixing device. Pandey K; Chatte A; Dalvi S Pharm Dev Technol; 2018 Jul; 23(6):608-619. PubMed ID: 28368746 [TBL] [Abstract][Full Text] [Related]
8. Amorphous isradipine nanosuspension by the sonoprecipitation method. Tran TT; Tran PH; Nguyen MN; Tran KT; Pham MN; Tran PC; Vo TV Int J Pharm; 2014 Oct; 474(1-2):146-50. PubMed ID: 25138256 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of wettability and dissolution properties of cilostazol using the supercritical antisolvent process: effect of various additives. Kim MS; Kim JS; Hwang SJ Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):230-3. PubMed ID: 20118585 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. Kassem MAA; ElMeshad AN; Fares AR AAPS PharmSciTech; 2017 May; 18(4):983-996. PubMed ID: 27506564 [TBL] [Abstract][Full Text] [Related]
11. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Zhou Y; Fang Q; Niu B; Wu B; Zhao Y; Quan G; Pan X; Wu C Colloids Surf B Biointerfaces; 2018 Dec; 172():372-379. PubMed ID: 30193196 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Dong Y; Ng WK; Shen S; Kim S; Tan RB Int J Pharm; 2009 Jun; 375(1-2):84-8. PubMed ID: 19481693 [TBL] [Abstract][Full Text] [Related]
13. Development of long-acting injectable suspensions by continuous antisolvent crystallization: An integrated bottom-up process. Nandi S; Padrela L; Tajber L; Collas A Int J Pharm; 2023 Dec; 648():123550. PubMed ID: 37890647 [TBL] [Abstract][Full Text] [Related]
14. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Elsayed I; Abdelbary AA; Elshafeey AH Int J Nanomedicine; 2014; 9():2943-53. PubMed ID: 24971006 [TBL] [Abstract][Full Text] [Related]
15. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Patel PJ; Gajera BY; Dave RH Drug Dev Ind Pharm; 2018 Dec; 44(12):1942-1952. PubMed ID: 30027778 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Zu Y; Sun W; Zhao X; Wang W; Li Y; Ge Y; Liu Y; Wang K Eur J Pharm Sci; 2014 Mar; 53():109-17. PubMed ID: 24345795 [TBL] [Abstract][Full Text] [Related]
17. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design. Rao MR; Bajaj A Drug Res (Stuttg); 2014 Dec; 64(12):663-7. PubMed ID: 24549965 [TBL] [Abstract][Full Text] [Related]
18. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Dong Y; Ng WK; Hu J; Shen S; Tan RB Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777 [TBL] [Abstract][Full Text] [Related]
19. Efavirenz Dissolution Enhancement IV-Antisolvent Nanocrystallization by Sonication, Physical Stability, and Dissolution. Sartori GJ; Prado LD; Rocha HVA AAPS PharmSciTech; 2017 Nov; 18(8):3011-3020. PubMed ID: 28493004 [TBL] [Abstract][Full Text] [Related]
20. Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam. Ambrus R; Kocbek P; Kristl J; Sibanc R; Rajkó R; Szabó-Révész P Int J Pharm; 2009 Nov; 381(2):153-9. PubMed ID: 19616609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]