These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34831076)
1. Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology. Sánchez J; Trenor B; Saiz J; Dössel O; Loewe A Cells; 2021 Oct; 10(11):. PubMed ID: 34831076 [TBL] [Abstract][Full Text] [Related]
2. Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Krishnan A; Chilton E; Raman J; Saxena P; McFarlane C; Trollope AF; Kinobe R; Chilton L Cells; 2021 Sep; 10(9):. PubMed ID: 34572150 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of platelet-derived growth factor-AB signaling prevents electromechanical remodeling of adult atrial myocytes that contact myofibroblasts. Musa H; Kaur K; O'Connell R; Klos M; Guerrero-Serna G; Avula UM; Herron TJ; Kalifa J; Anumonwo JM; Jalife J Heart Rhythm; 2013 Jul; 10(7):1044-51. PubMed ID: 23499624 [TBL] [Abstract][Full Text] [Related]
4. Mechanistic inquiry into the role of tissue remodeling in fibrotic lesions in human atrial fibrillation. McDowell KS; Vadakkumpadan F; Blake R; Blauer J; Plank G; Macleod RS; Trayanova NA Biophys J; 2013 Jun; 104(12):2764-73. PubMed ID: 23790385 [TBL] [Abstract][Full Text] [Related]
5. Acute effects of alcohol on cardiac electrophysiology and arrhythmogenesis: Insights from multiscale in silico analyses. Sutanto H; Cluitmans MJM; Dobrev D; Volders PGA; Bébarová M; Heijman J J Mol Cell Cardiol; 2020 Sep; 146():69-83. PubMed ID: 32710981 [TBL] [Abstract][Full Text] [Related]
6. In silico screening of the key cellular remodeling targets in chronic atrial fibrillation. Koivumäki JT; Seemann G; Maleckar MM; Tavi P PLoS Comput Biol; 2014 May; 10(5):e1003620. PubMed ID: 24853123 [TBL] [Abstract][Full Text] [Related]
7. Age-related changes in cellular electrophysiology and calcium handling for atrial fibrillation. Xu GJ; Gan TY; Tang BP; Chen ZH; Jiang T; Song JG; Guo X; Li JX J Cell Mol Med; 2013 Sep; 17(9):1109-18. PubMed ID: 23837844 [TBL] [Abstract][Full Text] [Related]
8. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Ni H; Morotti S; Zhang X; Dobrev D; Grandi E Cardiovasc Res; 2023 Oct; 119(13):2294-2311. PubMed ID: 37523735 [TBL] [Abstract][Full Text] [Related]
9. Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. Miragoli M; Glukhov AV Biomed Res Int; 2015; 2015():798768. PubMed ID: 26229964 [TBL] [Abstract][Full Text] [Related]
10. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Voigt N; Heijman J; Wang Q; Chiang DY; Li N; Karck M; Wehrens XHT; Nattel S; Dobrev D Circulation; 2014 Jan; 129(2):145-156. PubMed ID: 24249718 [TBL] [Abstract][Full Text] [Related]
12. Stretch-activated current in human atrial myocytes and Na Zhan H; Zhang J; Jiao A; Wang Q Biomed Eng Online; 2019 Oct; 18(1):104. PubMed ID: 31653259 [TBL] [Abstract][Full Text] [Related]
13. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia. Greer-Short A; Musa H; Alsina KM; Ni L; Word TA; Reynolds JO; Gratz D; Lane C; El-Refaey M; Unudurthi S; Skaf M; Li N; Fedorov VV; Wehrens XHT; Mohler PJ; Hund TJ Heart Rhythm; 2020 Mar; 17(3):503-511. PubMed ID: 31622781 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of spontaneous Ca Zhang X; Ni H; Morotti S; Smith CER; Sato D; Louch WE; Edwards AG; Grandi E J Physiol; 2023 Jul; 601(13):2655-2683. PubMed ID: 36094888 [TBL] [Abstract][Full Text] [Related]
15. Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Lenaerts I; Bito V; Heinzel FR; Driesen RB; Holemans P; D'hooge J; Heidbüchel H; Sipido KR; Willems R Circ Res; 2009 Oct; 105(9):876-85. PubMed ID: 19762679 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of arrhythmogenesis related to calcium-driven alternans in a model of human atrial fibrillation. Chang KC; Trayanova NA Sci Rep; 2016 Nov; 6():36395. PubMed ID: 27812021 [TBL] [Abstract][Full Text] [Related]
17. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II-Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Jansen HJ; Mackasey M; Moghtadaei M; Liu Y; Kaur J; Egom EE; Tuomi JM; Rafferty SA; Kirkby AW; Rose RA Circ Arrhythm Electrophysiol; 2019 Jan; 12(1):e006863. PubMed ID: 30636477 [TBL] [Abstract][Full Text] [Related]
18. Optogenetic current in myofibroblasts acutely alters electrophysiology and conduction of co-cultured cardiomyocytes. Kostecki GM; Shi Y; Chen CS; Reich DH; Entcheva E; Tung L Sci Rep; 2021 Feb; 11(1):4430. PubMed ID: 33627695 [TBL] [Abstract][Full Text] [Related]
19. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Lugenbiel P; Wenz F; Govorov K; Syren P; Katus HA; Thomas D Life Sci; 2017 Jul; 181():1-8. PubMed ID: 28546006 [TBL] [Abstract][Full Text] [Related]