BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34831133)

  • 1. Protein Binding to Cis-Motifs in mRNAs Coding Sequence Is Common and Regulates Transcript Stability and the Rate of Translation.
    Grzybowska EA; Wakula M
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation.
    Brümmer A; Hausser J
    Bioessays; 2014 Jun; 36(6):617-26. PubMed ID: 24737341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pdcd4 directly binds the coding region of c-myb mRNA and suppresses its translation.
    Singh P; Wedeken L; Waters LC; Carr MD; Klempnauer KH
    Oncogene; 2011 Dec; 30(49):4864-73. PubMed ID: 21643008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation.
    Hausser J; Syed AP; Bilen B; Zavolan M
    Genome Res; 2013 Apr; 23(4):604-15. PubMed ID: 23335364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coding regions affect mRNA stability in human cells.
    Narula A; Ellis J; Taliaferro JM; Rissland OS
    RNA; 2019 Dec; 25(12):1751-1764. PubMed ID: 31527111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.
    Benhalevy D; Gupta SK; Danan CH; Ghosal S; Sun HW; Kazemier HG; Paeschke K; Hafner M; Juranek SA
    Cell Rep; 2017 Mar; 18(12):2979-2990. PubMed ID: 28329689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational repression stabilizes messenger RNA of autophagy-related genes.
    Khambu B; Uesugi M; Kawazoe Y
    Genes Cells; 2011 Aug; 16(8):857-67. PubMed ID: 21790910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.
    Del Campo C; Bartholomäus A; Fedyunin I; Ignatova Z
    PLoS Genet; 2015 Oct; 11(10):e1005613. PubMed ID: 26495981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian microRNAs predominantly act to decrease target mRNA levels.
    Guo H; Ingolia NT; Weissman JS; Bartel DP
    Nature; 2010 Aug; 466(7308):835-40. PubMed ID: 20703300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced translation by Nucleolin via G-rich elements in coding and non-coding regions of target mRNAs.
    Abdelmohsen K; Tominaga K; Lee EK; Srikantan S; Kang MJ; Kim MM; Selimyan R; Martindale JL; Yang X; Carrier F; Zhan M; Becker KG; Gorospe M
    Nucleic Acids Res; 2011 Oct; 39(19):8513-30. PubMed ID: 21737422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel class of microRNA-recognition elements that function only within open reading frames.
    Zhang K; Zhang X; Cai Z; Zhou J; Cao R; Zhao Y; Chen Z; Wang D; Ruan W; Zhao Q; Liu G; Xue Y; Qin Y; Zhou B; Wu L; Nilsen T; Zhou Y; Fu XD
    Nat Struct Mol Biol; 2018 Nov; 25(11):1019-1027. PubMed ID: 30297778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation.
    Pfeiffer V; Papenfort K; Lucchini S; Hinton JC; Vogel J
    Nat Struct Mol Biol; 2009 Aug; 16(8):840-6. PubMed ID: 19620966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the binding specificity of the RNA-binding protein GLD-1 suggests a function of coding region-located sites in translational repression.
    Brümmer A; Kishore S; Subasic D; Hengartner M; Zavolan M
    RNA; 2013 Oct; 19(10):1317-26. PubMed ID: 23974436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology.
    Ono H; Kawasaki S; Saito H
    ACS Synth Biol; 2020 Jan; 9(1):169-174. PubMed ID: 31765565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coupled and uncoupled mechanisms by which trans-acting factors regulate mRNA stability and translation.
    Fukao A; Fujiwara T
    J Biochem; 2017 Apr; 161(4):309-314. PubMed ID: 28039391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. m
    Mao Y; Dong L; Liu XM; Guo J; Ma H; Shen B; Qian SB
    Nat Commun; 2019 Nov; 10(1):5332. PubMed ID: 31767846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-binding protein Nocte regulates Drosophila development by promoting translation reinitiation on mRNAs with long upstream open reading frames.
    Zhang T; Xue Y; Su S; Altouma V; Ho K; Martindale JL; Lee SK; Shen W; Park A; Zhang Y; De S; Gorospe M; Wang W
    Nucleic Acids Res; 2024 Jan; 52(2):885-905. PubMed ID: 38000373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untranslated regions of mRNAs.
    Mignone F; Gissi C; Liuni S; Pesole G
    Genome Biol; 2002; 3(3):REVIEWS0004. PubMed ID: 11897027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human ribosomal protein eL29 binds in vivo to the cognate mRNA by interacting with its coding sequence, as revealed from in-cell cross-linking data.
    Babaylova ES; Kolobova AV; Gopanenko AV; Tupikin AE; Kabilov MR; Malygin AA; Karpova GG
    Biochimie; 2020 Oct; 177():68-77. PubMed ID: 32798643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.