BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 34831379)

  • 21. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cas9-Mediated Genome Engineering in Drosophila melanogaster.
    Housden BE; Perrimon N
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency.
    Jensen KT; Fløe L; Petersen TS; Huang J; Xu F; Bolund L; Luo Y; Lin L
    FEBS Lett; 2017 Jul; 591(13):1892-1901. PubMed ID: 28580607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment.
    Jiang C; Meng L; Yang B; Luo X
    Clin Genet; 2020 Jan; 97(1):73-88. PubMed ID: 31231788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review).
    Rodríguez-Rodríguez DR; Ramírez-Solís R; Garza-Elizondo MA; Garza-Rodríguez ML; Barrera-Saldaña HA
    Int J Mol Med; 2019 Apr; 43(4):1559-1574. PubMed ID: 30816503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos.
    Hennig SL; Owen JR; Lin JC; Young AE; Ross PJ; Van Eenennaam AL; Murray JD
    Sci Rep; 2020 Dec; 10(1):22309. PubMed ID: 33339870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut.
    Tian A; Morejon V; Kohoutek S; Huang YC; Deng WM; Jiang J
    EMBO J; 2022 Oct; 41(19):e110834. PubMed ID: 35950466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas gene therapy.
    Zhang B
    J Cell Physiol; 2021 Apr; 236(4):2459-2481. PubMed ID: 32959897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutation-Specific Guide RNA for Compound Heterozygous Porphyria On-target Scarless Correction by CRISPR/Cas9 in Stem Cells.
    Prat F; Toutain J; Boutin J; Amintas S; Cullot G; Lalanne M; Lamrissi-Garcia I; Moranvillier I; Richard E; Blouin JM; Dabernat S; Moreau-Gaudry F; Bedel A
    Stem Cell Reports; 2020 Sep; 15(3):677-693. PubMed ID: 32795423
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing.
    Chaverra-Rodriguez D; Macias VM; Hughes GL; Pujhari S; Suzuki Y; Peterson DR; Kim D; McKeand S; Rasgon JL
    Nat Commun; 2018 Aug; 9(1):3008. PubMed ID: 30068905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and temporal control of gene manipulation in Drosophila via drug-activated Cas9 nucleases.
    Huynh N; Wang S; King-Jones K
    Insect Biochem Mol Biol; 2020 May; 120():103336. PubMed ID: 32105778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity.
    Aschenbrenner S; Kallenberger SM; Hoffmann MD; Huck A; Eils R; Niopek D
    Sci Adv; 2020 Feb; 6(6):eaay0187. PubMed ID: 32076642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology.
    Huck S; Bock J; Girardello J; Gauert M; Pul Ü
    RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response.
    Haapaniemi E; Botla S; Persson J; Schmierer B; Taipale J
    Nat Med; 2018 Jul; 24(7):927-930. PubMed ID: 29892067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-Based Genome Editing in Plants.
    Zhang Y; Ma X; Xie X; Liu YG
    Prog Mol Biol Transl Sci; 2017; 149():133-150. PubMed ID: 28712494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.