BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34831395)

  • 1. Involvement of CRMP2 in Regulation of Mitochondrial Morphology and Motility in Huntington's Disease.
    Brustovetsky T; Khanna R; Brustovetsky N
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRMP2 Is Involved in Regulation of Mitochondrial Morphology and Motility in Neurons.
    Brustovetsky T; Khanna R; Brustovetsky N
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease.
    Brustovetsky T; Khanna R; Brustovetsky N
    Cells; 2023 Apr; 12(9):. PubMed ID: 37174687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington's disease.
    Haun F; Nakamura T; Shiu AD; Cho DH; Tsunemi T; Holland EA; La Spada AR; Lipton SA
    Antioxid Redox Signal; 2013 Oct; 19(11):1173-84. PubMed ID: 23641925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington's disease affected brain.
    Lim NK; Hung LW; Pang TY; Mclean CA; Liddell JR; Hilton JB; Li QX; White AR; Hannan AJ; Crouch PJ
    Hum Mol Genet; 2014 Aug; 23(15):4051-63. PubMed ID: 24634145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington's disease.
    Roe AJ; Qi X
    Biochem Biophys Res Commun; 2018 Feb; 496(2):706-711. PubMed ID: 29397067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Oliveira AM; Oliveira CR; Rego AC
    Free Radic Biol Med; 2014 Sep; 74():129-44. PubMed ID: 24992836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca
    Cherubini M; Lopez-Molina L; Gines S
    Neurobiol Dis; 2020 Mar; 136():104741. PubMed ID: 31931142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease.
    Shirendeb UP; Calkins MJ; Manczak M; Anekonda V; Dufour B; McBride JL; Mao P; Reddy PH
    Hum Mol Genet; 2012 Jan; 21(2):406-20. PubMed ID: 21997870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5.
    Moutal A; François-Moutal L; Perez-Miller S; Cottier K; Chew LA; Yeon SK; Dai J; Park KD; Khanna M; Khanna R
    Mol Neurobiol; 2016 Apr; 53(3):1959-1976. PubMed ID: 25846820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease.
    Hu D; Sun X; Magpusao A; Fedorov Y; Thompson M; Wang B; Lundberg K; Adams DJ; Qi X
    Nat Commun; 2021 Sep; 12(1):5305. PubMed ID: 34489447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration.
    Guo X; Disatnik MH; Monbureau M; Shamloo M; Mochly-Rosen D; Qi X
    J Clin Invest; 2013 Dec; 123(12):5371-88. PubMed ID: 24231356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease.
    Joshi AU; Ebert AE; Haileselassie B; Mochly-Rosen D
    J Mol Cell Cardiol; 2019 Feb; 127():125-133. PubMed ID: 30550751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.
    Kim J; Moody JP; Edgerly CK; Bordiuk OL; Cormier K; Smith K; Beal MF; Ferrante RJ
    Hum Mol Genet; 2010 Oct; 19(20):3919-35. PubMed ID: 20660112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission.
    Yu J; Moutal A; Dorame A; Bellampalli SS; Chefdeville A; Kanazawa I; Pham NYN; Park KD; Weimer JM; Khanna R
    Mol Neurobiol; 2019 Jul; 56(7):5241-5255. PubMed ID: 30565051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease.
    Pellman JJ; Hamilton J; Brustovetsky T; Brustovetsky N
    J Neurochem; 2015 Aug; 134(4):652-67. PubMed ID: 25963273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease.
    Liu C; Fu Z; Wu S; Wang X; Zhang S; Chu C; Hong Y; Wu W; Chen S; Jiang Y; Wu Y; Song Y; Liu Y; Guo X
    EMBO Mol Med; 2022 Jul; 14(7):e15851. PubMed ID: 35670111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.