These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 34832103)
1. Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment. Ding Y; Wang S; Ma H; Ma B; Guo Z; You H; Mei J; Hou X; Liang Z; Li Z Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832103 [TBL] [Abstract][Full Text] [Related]
2. Investigation into the Novel Microalgae Membrane Bioreactor with Internal Circulating Fluidized Bed for Marine Aquaculture Wastewater Treatment. Ding Y; Guo Z; Mei J; Liang Z; Li Z; Hou X Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33218197 [TBL] [Abstract][Full Text] [Related]
3. [Pollutant Removal Performance and Membrane Fouling Characteristics in Marine Aquaculture Wastewater Treatment by a Microalgae Membrane Reactor]. Ma H; Li ZP; Liu F; Xu Z; You H; Wang F; Chen QW Huan Jing Ke Xue; 2019 Apr; 40(4):1865-1870. PubMed ID: 31087930 [TBL] [Abstract][Full Text] [Related]
4. Platymonas helgolandica-driven nitrogen removal from mariculture wastewater under different photoperiods: Performance evaluation, enzyme activity and transcriptional response. Chu G; Wang Q; Song C; Liu J; Zhao Y; Lu S; Zhang Z; Jin C; Gao M Bioresour Technol; 2023 Mar; 372():128700. PubMed ID: 36738978 [TBL] [Abstract][Full Text] [Related]
5. Mariculture wastewater treatment with Bacterial-Algal Coupling System (BACS): Effect of light intensity on microalgal biomass production and nutrient removal. Gao Y; Guo L; Liao Q; Zhang Z; Zhao Y; Gao M; Jin C; She Z; Wang G Environ Res; 2021 Oct; 201():111578. PubMed ID: 34228951 [TBL] [Abstract][Full Text] [Related]
6. [Growth of Platymonas helgolandica var. tsingtaoensis, Cylindrotheca closterium and Karenia mikimotoi and their survival strategies under different N/P ratios]. Sun J; Liu D; Chan Z; Wei T Ying Yong Sheng Tai Xue Bao; 2004 Nov; 15(11):2122-6. PubMed ID: 15707326 [TBL] [Abstract][Full Text] [Related]
7. Intensified production of microalgae and removal of nutrient using a microalgae membrane bioreactor (MMBR). Choi H Appl Biochem Biotechnol; 2015 Feb; 175(4):2195-205. PubMed ID: 25467944 [TBL] [Abstract][Full Text] [Related]
8. The Influence of Different Operation Conditions on the Treatment of Mariculture Wastewater by the Combined System of Anoxic Filter and Membrane Bioreactor. Ding Y; Guo Z; Ma B; Wang F; You H; Mei J; Hou X; Liang Z; Li Z; Jin C Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677495 [TBL] [Abstract][Full Text] [Related]
9. The effect of naphthenic acids on physiological characteristics of the microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis. Zhang H; Tang X; Shang J; Zhao X; Qu T; Wang Y Environ Pollut; 2018 Sep; 240():549-556. PubMed ID: 29758529 [TBL] [Abstract][Full Text] [Related]
10. Exploring effects of carbon, nitrogen, and phosphorus on greywater treatment by polyculture microalgae using response surface methodology and machine learning. Mohit A; Remya N J Environ Manage; 2024 Apr; 356():120728. PubMed ID: 38531138 [TBL] [Abstract][Full Text] [Related]
11. Size-dependent cellular internalization and effects of polystyrene microplastics in microalgae P. helgolandica var. tsingtaoensis and S. quadricauda. Chen Y; Ling Y; Li X; Hu J; Cao C; He D J Hazard Mater; 2020 Nov; 399():123092. PubMed ID: 32531675 [TBL] [Abstract][Full Text] [Related]
12. Sediment-seawater exchange altered adverse effects of ocean acidification towards marine microalgae. Jiang S; Xue Y; Wang M; Wang H; Liu L; Dai Y; Liu X; Yue T; Zhao J Sci Total Environ; 2023 May; 874():162533. PubMed ID: 36870492 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. Wang C; Yu X; Lv H; Yang J J Environ Biol; 2013 Apr; 34(2 Spec No):421-5. PubMed ID: 24620613 [TBL] [Abstract][Full Text] [Related]
14. [Performance and Membrane Fouling Characteristics of Mariculture Wastewater Treated by Anoxic MBR-MMR]. Chen FY; Xu Z; You H; Liu F; Li ZP; Chen QW; Han HW Huan Jing Ke Xue; 2020 Jun; 41(6):2762-2770. PubMed ID: 32608792 [TBL] [Abstract][Full Text] [Related]
15. Effects of operational parameters on the performance of unialgal Oedogonium sp. filamentous algae nutrient scrubbers under controlled environmental conditions. Hariz HB; Lawton RJ; Craggs RJ J Environ Manage; 2023 Jan; 326(Pt A):116705. PubMed ID: 36379079 [TBL] [Abstract][Full Text] [Related]
16. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2O process. Wang X; Peng Y; Wang S; Fan J; Cao X Bioprocess Biosyst Eng; 2006 May; 28(6):397-404. PubMed ID: 16508737 [TBL] [Abstract][Full Text] [Related]
17. Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. González-Camejo J; Jiménez-Benítez A; Ruano MV; Robles A; Barat R; Ferrer J J Environ Manage; 2019 Sep; 245():76-85. PubMed ID: 31150912 [TBL] [Abstract][Full Text] [Related]
18. Influence of wastewater composition on nutrient removal behaviors in the new anaerobic-anoxic/nitrifying/induced crystallization process. Shi J; Lu X; Yu R; Gu Q; Zhou Y Saudi J Biol Sci; 2014 Jan; 21(1):71-80. PubMed ID: 24596502 [TBL] [Abstract][Full Text] [Related]
19. Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater. Chowdhury N; Nakhla G; Zhu J Chemosphere; 2008 Mar; 71(5):807-15. PubMed ID: 18262217 [TBL] [Abstract][Full Text] [Related]
20. The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor. Ujang Z; Salim MR; Khor SL Water Sci Technol; 2002; 46(9):193-200. PubMed ID: 12448469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]