These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34832110)

  • 1. Formation of Water-Channel by Propylene Glycol into Polymer for Porous Materials.
    Hong SH; Cho Y; Kang SW
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channels formation in cellulose materials by accelerated transport of gas molecules and glycerin.
    Byun S; Cho Y; Kang SW
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127823. PubMed ID: 37949285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of citric acid concentrations on the porosity and performance of cellulose acetate-based porous membranes: A comprehensive study.
    Lee C; Kang SW
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130243. PubMed ID: 38378111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass transport to generate the channels in cellulose polymers by vacuum-assisted process.
    Lee S; Byun S; Kang SW
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128337. PubMed ID: 38000616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of porous cellulose propionate using hydrated hydroxyl groups and hydraulic pressure.
    Lee C; Kang SW
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130240. PubMed ID: 38368993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One.
    Hong SH; Kang SW
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ionic Radius in Metal Nitrate on Pore Generation of Cellulose Acetate in Polymer Nanocomposite.
    Lee WG; Cho Y; Kang SW
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32340116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and application of 5 μm monodisperse porous silica microspheres with controllable pore size using polymeric microspheres as templates for the separation of small solutes and proteins by high-performance liquid chromatography.
    Bai J; Zhu Q; Tang C; Liu J; Yi Y; Bai Q
    J Chromatogr A; 2022 Jul; 1675():463165. PubMed ID: 35623189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas transport into cellulose materials for highly porous structure.
    Byun S; Kang SW
    Carbohydr Polym; 2023 Dec; 321():121301. PubMed ID: 37739504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced porous membrane fabrication using cellulose acetate and citric acid: Improved structural integrity, thermal stability, and gas permeability.
    Lee C; Lee S; Kang SW
    Carbohydr Polym; 2024 Jan; 324():121571. PubMed ID: 37985069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.
    Sabir A; Shafiq M; Islam A; Sarwar A; Dilshad MR; Shafeeq A; Zahid Butt MT; Jamil T
    Carbohydr Polym; 2015 Nov; 132():589-97. PubMed ID: 26256386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnected channels through polypropylene and cellulose acetate by utilizing lactic acid for stable separators.
    Kim SH; Kang SW
    Chem Commun (Camb); 2021 Sep; 57(71):8965-8968. PubMed ID: 34486585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization.
    Cha C; Kim ES; Kim IW; Kong H
    Biomaterials; 2011 Apr; 32(11):2695-703. PubMed ID: 21262532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydration on the structure of non aqueous ethyl cellulose/propylene glycol dicaprylate gels.
    Bruno L; Kasapis S; Heng PW
    Int J Biol Macromol; 2012 Mar; 50(2):385-92. PubMed ID: 22227266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Nanochannels Using Polypropylene and Acetylcellulose for Stable Separators.
    Lee HJ; Cho Y; Kang SW
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Blended Cellulose Acetate Membranes.
    Asiri AM; Petrosino F; Pugliese V; Khan SB; Alamry KA; Alfifi SY; Marwani HM; Alotaibi MM; Algieri C; Chakraborty S
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.
    Lee WG; Kim DH; Jeon WC; Kwak SK; Kang SJ; Kang SW
    Sci Rep; 2017 Apr; 7(1):1287. PubMed ID: 28455516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of gelatin-incorporated nanoporous chitosan-based membranes for potential water desalination applications.
    Sarwar T; Raza ZA; Nazeer MA; Khan A
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126588. PubMed ID: 37659503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water.
    Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM
    Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.