BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34832126)

  • 1. The Ionic Selectivity of Lysenin Channels in Open and Sub-Conducting States.
    Bogard A; Finn PW; McKinney F; Flacau IM; Smith AR; Whiting R; Fologea D
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu
    Bogard A; Finn PW; Smith AR; Flacau IM; Whiting R; Fologea D
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential analytical applications of lysenin channels for detection of multivalent ions.
    Fologea D; Al Faori R; Krueger E; Mazur YI; Kern M; Williams M; Mortazavi A; Henry R; Salamo GJ
    Anal Bioanal Chem; 2011 Oct; 401(6):1871-9. PubMed ID: 21818682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysenin Channels as Sensors for Ions and Molecules.
    Bogard A; Abatchev G; Hutchinson Z; Ward J; Finn PW; McKinney F; Fologea D
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin.
    Bryant SL; Clark T; Thomas CA; Ware KS; Bogard A; Calzacorta C; Prather D; Fologea D
    Toxins (Basel); 2018 Aug; 10(8):. PubMed ID: 30126104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporary Membrane Permeabilization via the Pore-Forming Toxin Lysenin.
    Shrestha N; Thomas CA; Richtsmeier D; Bogard A; Hermann R; Walker M; Abatchev G; Brown RJ; Fologea D
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32456013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the hysteresis observed in gating of lysenin channels.
    Krueger E; Al Faouri R; Fologea D; Henry R; Straub D; Salamo G
    Biophys Chem; 2013 Dec; 184():126-30. PubMed ID: 24075493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.
    Bryant SL; Eixenberger JE; Rossland S; Apsley H; Hoffmann C; Shrestha N; McHugh M; Punnoose A; Fologea D
    J Nanobiotechnology; 2017 Dec; 15(1):90. PubMed ID: 29246155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivalent ions control the transport through lysenin channels.
    Fologea D; Krueger E; Al Faori R; Lee R; Mazur YI; Henry R; Arnold M; Salamo GJ
    Biophys Chem; 2010 Nov; 152(1-3):40-5. PubMed ID: 20724059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ionic channels formed in the lipid bilayer membranes by aureofuscin, a polyene antibiotics].
    Shi YL; Wang WP; Zou YC
    Sheng Li Xue Bao; 1991 Apr; 43(2):128-33. PubMed ID: 1712513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic sensing of Angiotensin II with lysenin channels.
    Shrestha N; Bryant SL; Thomas C; Richtsmeier D; Pu X; Tinker J; Fologea D
    Sci Rep; 2017 May; 7(1):2448. PubMed ID: 28550293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic polymers inhibit the conductance of lysenin channels.
    Fologea D; Krueger E; Rossland S; Bryant S; Foss W; Clark T
    ScientificWorldJournal; 2013; 2013():316758. PubMed ID: 24191139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
    Fologea D; Krueger E; Mazur YI; Stith C; Okuyama Y; Henry R; Salamo GJ
    Biochim Biophys Acta; 2011 Dec; 1808(12):2933-9. PubMed ID: 21945404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Electric Dipole Model for Voltage-induced Gating Mechanism of Lysenin.
    Faouri RA; Krueger E; Govind Kumar V; Fologea D; Straub D; Alismail H; Alfaori Q; Kight A; Ray J; Henry R; Moradi M; Salamo G
    Sci Rep; 2019 Aug; 9(1):11440. PubMed ID: 31391571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding.
    Kwiatkowska K; Hordejuk R; Szymczyk P; Kulma M; Abdel-Shakor AB; Płucienniczak A; Dołowy K; Szewczyk A; Sobota A
    Mol Membr Biol; 2007; 24(2):121-34. PubMed ID: 17453419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of the Goldman-Hodgkin-Katz equation in paracellular ionic pathways of gallbladder epithelium.
    Salas PJ; López EM
    Biochim Biophys Acta; 1982 Sep; 691(1):178-82. PubMed ID: 6291606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysenin forms a voltage-dependent channel in artificial lipid bilayer membranes.
    Ide T; Aoki T; Takeuchi Y; Yanagida T
    Biochem Biophys Res Commun; 2006 Jul; 346(1):288-92. PubMed ID: 16756950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit.
    Krasilnikov OV; Muratkhodjaev JN; Voronov SE; Yezepchuk YV
    Biochim Biophys Acta; 1991 Aug; 1067(2):166-70. PubMed ID: 1715187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic control of lysenin's transport and voltage-gating properties.
    Bryant S; Shrestha N; Carnig P; Kosydar S; Belzeski P; Hanna C; Fologea D
    Purinergic Signal; 2016 Sep; 12(3):549-59. PubMed ID: 27318938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramembrane congestion effects on lysenin channel voltage-induced gating.
    Krueger E; Bryant S; Shrestha N; Clark T; Hanna C; Pink D; Fologea D
    Eur Biophys J; 2016 Mar; 45(2):187-94. PubMed ID: 26695013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.