BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34832144)

  • 1. Antibacterial Efficacy of Cold-Sprayed Copper Coatings against Gram-Positive
    Hutasoit N; Topa SH; Javed MA; Rahman Rashid RA; Palombo E; Palanisamy S
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings.
    Goudarzi M; Saviz S; Ghoranneviss M; Salar Elahi A
    J Xray Sci Technol; 2017; 25(3):479-485. PubMed ID: 27911352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial and Virucidal Evaluation of Ultrafine Wire Arc Sprayed German Silver Coatings.
    Bassam SN; Salimijazi H; Labbaf S; Amya M; Ehsani P; Mehrbod P
    J Therm Spray Technol; 2023; 32(4):959-969. PubMed ID: 37521527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface.
    Nie Y; Kalapos C; Nie X; Murphy M; Hussein R; Zhang J
    Ann Clin Microbiol Antimicrob; 2010 Sep; 9():25. PubMed ID: 20843373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial characteristics of thermal plasma spray system.
    Goudarzi M; Saviz S; Ghoranneviss M; Salar Elahi A
    J Xray Sci Technol; 2018; 26(3):509-521. PubMed ID: 29562572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent Copper-Based Antibacterial Coatings with Enhanced Efficacy against Pseudomonas aeruginosa.
    Mitra D; Li M; Kang ET; Neoh KG
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):73-83. PubMed ID: 30525426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology.
    Hutasoit N; Kennedy B; Hamilton S; Luttick A; Rahman Rashid RA; Palanisamy S
    Manuf Lett; 2020 Aug; 25():93-97. PubMed ID: 32904558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory-based study of novel antimicrobial cold spray coatings to combat surface microbial contamination.
    Lucas MDI; Botef I; Reid RG; van Vuuren SF
    Infect Control Hosp Epidemiol; 2020 Dec; 41(12):1378-1383. PubMed ID: 32811579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the emergence of antibacterial and antiviral copper cold spray coatings.
    Sousa BC; Massar CJ; Gleason MA; Cote DL
    J Biol Eng; 2021 Feb; 15(1):8. PubMed ID: 33627170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates.
    Xue N; Li W; Shao L; Tu Z; Chen Y; Dai S; Ye N; Zhang J; Liu Q; Wang J; Zhang M; Shi X; Wang T; Chen M; Huang Y; Xu F; Zhu L
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial and Antifungal Properties of Polyester, Polylactide, and Cotton Nonwovens and Fabrics, by Means of Stable Aqueous Dispersions Containing Copper Silicate and Some Metal Oxides.
    Chruściel JJ; Olczyk J; Kudzin MH; Kaczmarek P; Król P; Tarzyńska N
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.
    Jin X; Gao L; Liu E; Yu F; Shu X; Wang H
    J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface.
    Augustin A; Huilgol P; Udupa KR; Bhat K U
    J Mech Behav Biomed Mater; 2016 Oct; 63():352-360. PubMed ID: 27450037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial Effect of Stainless Steel Surfaces Treated with a Nanotechnological Coating Approved for Food Contact.
    Di Cerbo A; Mescola A; Rosace G; Stocchi R; Rossi G; Alessandrini A; Preziuso S; Scarano A; Rea S; Loschi AR; Sabia C
    Microorganisms; 2021 Jan; 9(2):. PubMed ID: 33530444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Antibacterial Properties of Copper-Coated Nanotextured Stainless Steel.
    Tripathi A; Park J; Pho T; Champion JA
    Small; 2024 May; ():e2311546. PubMed ID: 38766975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth.
    Nielsen CK; Subbiahdoss G; Zeng G; Salmi Z; Kjems J; Mygind T; Snabe T; Meyer RL
    J Appl Microbiol; 2018 Jan; 124(1):179-187. PubMed ID: 29119696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing.
    Rivera LR; Cochis A; Biser S; Canciani E; Ferraris S; Rimondini L; Boccaccini AR
    Bioact Mater; 2021 May; 6(5):1479-1490. PubMed ID: 33251384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SiC
    Bhaskar N; Sulyaeva V; Gatapova E; Kaichev V; Rogilo D; Khomyakov M; Kosinova M; Basu B
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5571-5587. PubMed ID: 33320557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.