These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34832227)

  • 1. External Condensation of HFE 7000 and HFE 7100 Refrigerants in Shell and Tube Heat Exchangers.
    Kruzel M; Bohdal T; Dutkowski K
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study of HFE 7000 Refrigerant Condensation in Horizontal Pipe Minichannels.
    Sikora M; Bohdal T; Formela K
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow Structure Investigations during Novec Refrigerant Condensation in Minichannels.
    Sikora M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resurrection of carbon dioxide as refrigerant in solar thermal absorption cooling systems.
    Dilshad S; Abas N; Hasan QU
    Heliyon; 2023 Jul; 9(7):e17633. PubMed ID: 37449118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of low-GWP refrigerant pool boiling heat transfer on enhanced surfaces.
    Lin L; Kedzierski MA
    Int J Heat Mass Transf; 2019; 131():. PubMed ID: 31274876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow condensation heat transfer coefficient and pressure drop data for R134a alternative refrigerants R513A and R450A in a 0.95-mm-diameter minichannel.
    Morrow JA; Derby MM
    Data Brief; 2022 Dec; 45():108577. PubMed ID: 36131950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the Condensation Process of Low-Pressure Refrigerants in Mini-Channels.
    Sikora M; Bohdal T
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of heat transfer performance of spiral wound heat exchanger under sloshing condition.
    Dong L; Dong C; Wu X
    PLoS One; 2023; 18(12):e0295315. PubMed ID: 38079437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fouling of Polymeric Hollow Fiber Heat Exchangers by Air Dust.
    Astrouski I; Raudensky M; Kudelova T; Kroulikova T
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LOW-GWP REFRIGERANTS FOR MEDIUM AND HIGH-PRESSURE APPLICATIONS.
    Domanski PA; Brignoli R; Brown JS; Kazakov AF; McLinden MO
    Int J Refrig; 2017 Dec; 84():198-209. PubMed ID: 29887651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.
    Takahashi K; Kanno T; Sakai A; Tamaki H; Kusada H; Yamada Y
    Sci Rep; 2013; 3():1501. PubMed ID: 23511347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review.
    Upot NV; Fazle Rabbi K; Khodakarami S; Ho JY; Kohler Mendizabal J; Miljkovic N
    Nanoscale Adv; 2023 Feb; 5(5):1232-1270. PubMed ID: 36866258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Refrigerant Cooling in a Battery Thermal Management System under High Temperature Conditions: A Review.
    Kang Y; Hu Y; Zhang C; Yang K; Zhang Q
    ACS Omega; 2024 Jun; 9(24):25591-25609. PubMed ID: 38911816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.
    Maina JN
    Adv Anat Embryol Cell Biol; 2002; 163():III-XII, 1-108. PubMed ID: 11892241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy Generation of Forced Convection during Melting of Ice Slurry.
    Niezgoda-Żelasko B
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of non-uniform magnetic field on the thermal efficiency hydrodynamic characteristics of nanofluid in double pipe heat exchanger.
    Azizi Y; Bahramkhoo M; Kazemi A
    Sci Rep; 2023 Jan; 13(1):407. PubMed ID: 36624116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of various flow maldistribution quantification methods in mini heat exchangers.
    Dąbrowski P
    Sci Rep; 2023 Jul; 13(1):11482. PubMed ID: 37460610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable refrigerant flow cooling assessment in humid environment using different refrigerants.
    Saab R; Al Quabeh H; Hassan Ali MI
    J Environ Manage; 2018 Oct; 224():243-251. PubMed ID: 30055457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger.
    Onyiriuka EJ; Ighodaro OO; Adelaja AO; Ewim DRE; Bhattacharyya S
    Heliyon; 2019 Sep; 5(9):e02416. PubMed ID: 31538112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental investigation of the convective heat transfer augmentation in U-bend double pipe heat exchanger using water-MgO-Cmc fluid.
    Gabir MM; Albayati IM; Hatami M; Alkhafaji D
    Sci Rep; 2024 May; 14(1):12442. PubMed ID: 38816432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.