BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34832396)

  • 1. Taurine-Modified Boehmite Nanoparticles for GFRP Wind Turbine Rotor Blade Fatigue Life Enhancement.
    Adam TJ; Exner W; Wierach P
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades.
    Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Lapse Helical X-ray Computed Tomography (CT) Study of Tensile Fatigue Damage Formation in Composites for Wind Turbine Blades.
    Wang Y; Mikkelsen LP; Pyka G; Withers PJ
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30469398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Orientation and Temperature on the Mechanical Properties of a 20 Years Old Wind Turbine Blade GFR Composite.
    Ahmed MMZ; Alzahrani B; Jouini N; Hessien MM; Ataya S
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Regulation of the Cross-Linking Structure in Polyurethane: Achieving Outstanding Processing and Mechanical Properties for a Wind Turbine Blade.
    Jiang Z; Li L; Fu L; Xiong G; Wu H; Guo S
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor under degradation of seawater.
    Jiang Y; Finnegan W; Wallace F; Flanagan M; Flanagan T; Goggins J
    J Ocean Eng Mar Energy; 2023 Mar; 9(3):1-18. PubMed ID: 37361141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycled wind turbine blades as a feedstock for second generation composites.
    Mamanpush SH; Li H; Englund K; Tabatabaei AT
    Waste Manag; 2018 Jun; 76():708-714. PubMed ID: 29506776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration-Based Fatigue Analysis of Octet-Truss Lattice Infill Blades for Utilization in Turbine Rotors.
    Hussain S; Ghopa WAW; Singh SSK; Azman AH; Abdullah S; Harun Z; Hishamuddin H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis of Reinforced Epoxy Functionalized Carbon Nanotubes Composites for Vertical Axis Wind Turbine Blade.
    Elhenawy Y; Fouad Y; Marouani H; Bassyouni M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33525701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective for Fibre-Hybrid Composites in Wind Energy Applications.
    Swolfs Y
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29117126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Epoxy Composite Performance with Carbon Nanofillers: A Solution for Moisture Resistance and Extended Durability in Wind Turbine Blade Structures.
    Ntaflos A; Foteinidis G; Liangou T; Bilalis E; Anyfantis K; Tsouvalis N; Tyriakidi T; Tyriakidis K; Tyriakidis N; Paipetis AS
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.
    Al-Khudairi O; Hadavinia H; Little C; Gillmore G; Greaves P; Dyer K
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28972548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycled Glass Fiber Composites from Wind Turbine Waste for 3D Printing Feedstock: Effects of Fiber Content and Interface on Mechanical Performance.
    Rahimizadeh A; Kalman J; Henri R; Fayazbakhsh K; Lessard L
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic disconnection of C-O bonds in epoxy resins and composites.
    Ahrens A; Bonde A; Sun H; Wittig NK; Hammershøj HCD; Batista GMF; Sommerfeldt A; Frølich S; Birkedal H; Skrydstrup T
    Nature; 2023 May; 617(7962):730-737. PubMed ID: 37100913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Stress Level and Fibre Volume Fraction on Fatigue Performance of Glass Fibre-Reinforced Polyester Composites.
    Zaghloul MY; Zaghloul MMY; Zaghloul MMY
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process Modeling of Composite Materials for Wind-Turbine Rotor Blades: Experiments and Numerical Modeling.
    Wieland B; Ropte S
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 28981458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Testing by Torsion of Scalable Wind Turbine Blades.
    Morăraș CI; Goanță V; Istrate B; Munteanu C; Dobrescu GS
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Engineered Materials: Epoxy Resin Nanocomposite Reinforced with Modified Epoxidized Natural Rubber and Fibers for Low Speed Wind Turbine Blades.
    Kasagepongsan C; Suchat S
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.