These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34832434)
1. The Influence of Loop Heat Pipe Evaporator Porous Structure Parameters and Charge on Its Effectiveness for Ethanol and Water as Working Fluids. Blauciak K; Szymanski P; Mikielewicz D Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832434 [TBL] [Abstract][Full Text] [Related]
2. Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures. Nemec P; Smitka M; Malcho M ScientificWorldJournal; 2014; 2014():724740. PubMed ID: 24959622 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances in Loop Heat Pipes with Flat Evaporator. Szymanski P; Law R; MᶜGlen RJ; Reay DA Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828073 [TBL] [Abstract][Full Text] [Related]
4. Current Trends in Wick Structure Construction in Loop Heat Pipes Applications: A Review. Szymanski P; Mikielewicz D; Fooladpanjeh S Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013901 [TBL] [Abstract][Full Text] [Related]
5. Superior Heat and Mass Transfer Performance of Bionic Wick with Finger-like Pores Inspired by the Stomatal Array of Natural Leaf. Xu K; Long L; Chen C; Ye H Langmuir; 2024 May; 40(19):10129-10142. PubMed ID: 38700156 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe. Luo JL; Mo DC; Wang YQ; Lyu SS ACS Nano; 2021 Apr; 15(4):6614-6621. PubMed ID: 33792288 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Micro CT based method for porosity estimation of sintered-wick heat pipes. Agustina D; Putra N Heliyon; 2023 Mar; 9(3):e13936. PubMed ID: 36925538 [TBL] [Abstract][Full Text] [Related]
8. Measurement of Capillary Radius and Contact Angle within Porous Media. Ravi S; Dharmarajan R; Moghaddam S Langmuir; 2015 Dec; 31(47):12954-9. PubMed ID: 26538412 [TBL] [Abstract][Full Text] [Related]
9. An Ultralight Capillary-Driven Heat Pipe. Lee YJ; Wang YX; Jeong YC; Atkins MD; Kang K; Kim T Langmuir; 2024 Apr; 40(15):8194-8204. PubMed ID: 38584470 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries. Ma B Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083 [TBL] [Abstract][Full Text] [Related]
11. Visualization and Heat Transfer Performance of Mini-Grooved Flat Heat Pipe Filled with Different Working Fluids. Xin F; Lyu Q; Tian W Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014263 [TBL] [Abstract][Full Text] [Related]
12. Study of a loop heat pipe using neutron radiography. Cimbala JM; Brenizer JS; Chuang AP; Hanna S; Thomas Conroy C; El-Ganayni AA; Riley DR Appl Radiat Isot; 2004 Oct; 61(4):701-5. PubMed ID: 15246420 [TBL] [Abstract][Full Text] [Related]
13. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs. Chang C; Han Z; He X; Wang Z; Ji Y Sci Rep; 2021 Apr; 11(1):8255. PubMed ID: 33859317 [TBL] [Abstract][Full Text] [Related]
14. Multiobjective Optimization of Graded, Hybrid Micropillar Wicks for Capillary-Fed Evaporation. Liu T; Asheghi M; Goodson KE Langmuir; 2022 Jan; 38(1):221-230. PubMed ID: 34967627 [TBL] [Abstract][Full Text] [Related]
15. Electro-osmosis Aided Thin-Film Evaporation from a Micropillar Wick Structure. Pujahari A; DasGupta S; Bhattacharya A Langmuir; 2022 Jul; 38(27):8442-8455. PubMed ID: 35771505 [TBL] [Abstract][Full Text] [Related]
16. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures. Ravi S; Dharmarajan R; Moghaddam S Langmuir; 2016 Aug; 32(33):8289-97. PubMed ID: 27458050 [TBL] [Abstract][Full Text] [Related]