BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34832439)

  • 1. Study of Copper-Nickel Nanoparticle Resistive Ink Compatible with Printed Copper Films for Power Electronics Applications.
    Hlina J; Reboun J; Hamacek A
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of New Nitrogen-Fireable Copper-Nickel Thick Film Paste Formulation Compatible with Thick Printed Copper.
    Hlina J; Reboun J; Simonovsky M; Syrovy T; Janda M; Hamacek A
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid nanomaterial inks for printed resistive temperature sensors with tunable properties to maximize sensitivity.
    Tursunniyaz M; Agarwal V; Meredith A; Andrews J
    Nanoscale; 2022 Dec; 15(1):162-170. PubMed ID: 36478149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.
    Tsai CY; Chang WC; Chen GL; Chung CH; Liang JX; Ma WY; Yang TN
    Nanoscale Res Lett; 2015 Dec; 10(1):357. PubMed ID: 26370132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and Aerosol Jet Printing of Nickel Nanoparticle Ink for High-Temperature Microelectronic Applications and Patterned Graphene Growth.
    McKibben N; Curtis M; Maryon O; Sawyer M; Lazouskaya M; Eixenberger J; Deng Z; Estrada D
    ACS Appl Electron Mater; 2024 Feb; 6(2):748-760. PubMed ID: 38435803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flame-driven aerosol synthesis of copper-nickel nanopowders and conductive nanoparticle films.
    Sharma MK; Qi D; Buchner RD; Scharmach WJ; Papavassiliou V; Swihart MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13542-51. PubMed ID: 25075968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper inks for printed electronics: a review.
    Zeng X; He P; Hu M; Zhao W; Chen H; Liu L; Sun J; Yang J
    Nanoscale; 2022 Nov; 14(43):16003-16032. PubMed ID: 36301077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver.
    Gierczak M; Prażmowska-Czajka J; Dziedzic A
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29329203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive electronics circuits from aerosol jet printed silver inks.
    Skarżyński K; Krzemiński J; Jakubowska M; Słoma M
    Sci Rep; 2021 Sep; 11(1):18141. PubMed ID: 34518558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.
    Dharmadasa R; Jha M; Amos DA; Druffel T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the Types of Alkanolamines on the Properties of Copper(II) Formate-Based Conductive Ink.
    Yang W; Guo Z; Zhao X; Zhang X; List-Kratochvil EJW
    Langmuir; 2024 Apr; 40(13):7095-7105. PubMed ID: 38511863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing.
    Borghetti M; Serpelloni M; Sardini E
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics.
    Valayil Varghese T; Eixenberger J; Rajabi-Kouchi F; Lazouskaya M; Francis C; Burgoyne H; Wada K; Subbaraman H; Estrada D
    ACS Mater Au; 2024 Jan; 4(1):65-73. PubMed ID: 38221917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.