BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34832524)

  • 1. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of
    Shedleur-Bourguignon F; Thériault WP; Longpré J; Thibodeau A; Fravalo P
    Pathogens; 2021 Oct; 10(11):. PubMed ID: 34832524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Occurrence of
    Cherifi T; Arsenault J; Quessy S; Fravalo P
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil.
    Sereno MJ; Viana C; Pegoraro K; da Silva DAL; Yamatogi RS; Nero LA; Bersot LDS
    Food Microbiol; 2019 Dec; 84():103234. PubMed ID: 31421784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking of Listeria monocytogenes in meat establishment using Whole Genome Sequencing as a food safety management tool: A proof of concept.
    Nastasijevic I; Milanov D; Velebit B; Djordjevic V; Swift C; Painset A; Lakicevic B
    Int J Food Microbiol; 2017 Sep; 257():157-164. PubMed ID: 28666130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the contamination sources of microbial population and characterizing
    Jeong J; Song H; Kim WH; Chae M; Lee JY; Kwon YK; Cho S
    Front Microbiol; 2023; 14():1282961. PubMed ID: 38098672
    [No Abstract]   [Full Text] [Related]  

  • 6. Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing.
    Alvarez-Molina A; Cobo-Díaz JF; López M; Prieto M; de Toro M; Alvarez-Ordóñez A
    Int J Food Microbiol; 2021 Feb; 340():109043. PubMed ID: 33454520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and distribution of Listeria monocytogenes in meat processing plants.
    Martín B; Perich A; Gómez D; Yangüela J; Rodríguez A; Garriga M; Aymerich T
    Food Microbiol; 2014 Dec; 44():119-27. PubMed ID: 25084653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct Microbiotas Are Associated with Different Production Lines in the Cutting Room of a Swine Slaughterhouse.
    Shedleur-Bourguignon F; Duchemin T; P Thériault W; Longpré J; Thibodeau A; Hocine MN; Fravalo P
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of
    Zhang H; Que F; Xu B; Sun L; Zhu Y; Chen W; Ye Y; Dong Q; Liu H; Zhang X
    Front Microbiol; 2021; 12():628204. PubMed ID: 33717016
    [No Abstract]   [Full Text] [Related]  

  • 10. Listeria monocytogenes isolates from ready to eat plant produce are diverse and have virulence potential.
    Smith A; Hearn J; Taylor C; Wheelhouse N; Kaczmarek M; Moorhouse E; Singleton I
    Int J Food Microbiol; 2019 Jun; 299():23-32. PubMed ID: 30939364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence, distribution and diversity of Listeria monocytogenes contamination on beef and pig carcasses after slaughter.
    Demaître N; Van Damme I; De Zutter L; Geeraerd AH; Rasschaert G; De Reu K
    Meat Sci; 2020 Nov; 169():108177. PubMed ID: 32544760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Depth Longitudinal Study of Listeria monocytogenes ST9 Isolates from the Meat Processing Industry: Resolving Diversity and Transmission Patterns Using Whole-Genome Sequencing.
    Fagerlund A; Langsrud S; Møretrø T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414794
    [No Abstract]   [Full Text] [Related]  

  • 13. Co-Occurrence of
    Zwirzitz B; Wetzels SU; Dixon ED; Fleischmann S; Selberherr E; Thalguter S; Quijada NM; Dzieciol M; Wagner M; Stessl B
    Front Microbiol; 2021; 12():632935. PubMed ID: 33613505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution, diversity and persistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains.
    Cherifi T; Arsenault J; Pagotto F; Quessy S; Côté JC; Neira K; Fournaise S; Bekal S; Fravalo P
    PLoS One; 2020; 15(8):e0236807. PubMed ID: 32760141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking Listeria monocytogenes contamination and virulence-associated characteristics in the ready-to-eat meat-based food products industry according to the hygiene level.
    Henriques AR; Gama LT; Fraqueza MJ
    Int J Food Microbiol; 2017 Feb; 242():101-106. PubMed ID: 27919005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical points in meat production lines regarding the introduction of Listeria monocytogenes.
    van den Elzen AM; Snijders JM
    Vet Q; 1993 Dec; 15(4):143-5. PubMed ID: 8122349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Listeria monocytogenes Circulating in Rabbit Meat Products and Slaughterhouses in Italy: Prevalence Data and Comparison Among Typing Results.
    De Cesare A; Parisi A; Mioni R; Comin D; Lucchi A; Manfreda G
    Foodborne Pathog Dis; 2017 Mar; 14(3):167-176. PubMed ID: 28067541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Listeria monocytogenes occurrence and characterization in meat-producing plants.
    Peccio A; Autio T; Korkeala H; Rosmini R; Trevisani M
    Lett Appl Microbiol; 2003; 37(3):234-8. PubMed ID: 12904225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives.
    Chaitiemwong N; Hazeleger WC; Beumer RR
    Int J Food Microbiol; 2010 Aug; 142(1-2):260-3. PubMed ID: 20655607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Connection between Persistent, Disinfectant-Resistant Listeria monocytogenes Strains from Two Geographically Separate Iberian Pork Processing Plants: Evidence from Comparative Genome Analysis.
    Ortiz S; López-Alonso V; Rodríguez P; Martínez-Suárez JV
    Appl Environ Microbiol; 2016 Jan; 82(1):308-17. PubMed ID: 26497458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.