These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34832579)

  • 1. In Vitro Study of Biocontrol Potential of Rhizospheric
    Hu S; Wang X; Sun W; Wang L; Li W
    Pathogens; 2021 Nov; 10(11):. PubMed ID: 34832579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism of Rhizosphere
    Tian L; Hu S; Wang X; Guo Y; Huang L; Wang L; Li W
    Pathogens; 2022 Oct; 11(10):. PubMed ID: 36297252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere.
    Rasool A; Imran Mir M; Zulfajri M; Hanafiah MM; Azeem Unnisa S; Mahboob M
    Microb Pathog; 2021 Jan; 150():104734. PubMed ID: 33429050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole Genome Analysis of Sugarcane Root-Associated Endophyte
    Singh P; Singh RK; Guo DJ; Sharma A; Singh RN; Li DP; Malviya MK; Song XP; Lakshmanan P; Yang LT; Li YR
    Front Microbiol; 2021; 12():628376. PubMed ID: 33613496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi.
    Chandra H; Kumari P; Bisht R; Prasad R; Yadav S
    Mol Biol Rep; 2020 Aug; 47(8):6015-6026. PubMed ID: 32734439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhizosphere microorganisms of
    Zhang J; Lu J; Zhu Y; Huang Q; Qin L; Zhu B
    Front Plant Sci; 2022; 13():1045147. PubMed ID: 36483959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum.
    Ahmad T; Bashir A; Farooq S; Riyaz-Ul-Hassan S
    J Appl Microbiol; 2022 Jan; 132(1):495-508. PubMed ID: 34170610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity.
    Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A
    Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere.
    Zouagui R; Zouagui H; Aurag J; Ibrahimi A; Sbabou L
    BMC Genomics; 2024 Mar; 25(1):289. PubMed ID: 38500021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant growth promoting bacteria from Crocus sativus rhizosphere.
    Ambardar S; Vakhlu J
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2271-9. PubMed ID: 23749248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-genome analysis revealed the growth-promoting and biological control mechanism of the endophytic bacterial strain
    Wang Y; Sun Z; Zhao Q; Yang X; Li Y; Zhou H; Zhao M; Zheng H
    Front Microbiol; 2023; 14():1287921. PubMed ID: 38235428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas.
    Shen X; Hu H; Peng H; Wang W; Zhang X
    BMC Genomics; 2013 Apr; 14():271. PubMed ID: 23607266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the interaction mechanism between Crocus sativus and Fusarium oxysporum based on dual RNA-seq.
    Luo J; Zhang A; Tan K; Yang S; Ma X; Bai X; Hou Y; Bai J
    Plant Cell Rep; 2023 Jan; 42(1):91-106. PubMed ID: 36350395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening and Biocontrol Potential of Rhizobacteria Native to Gangetic Plains and Hilly Regions to Induce Systemic Resistance and Promote Plant Growth in Chilli against Bacterial Wilt Disease.
    Kashyap AS; Manzar N; Rajawat MVS; Kesharwani AK; Singh RP; Dubey SC; Pattanayak D; Dhar S; Lal SK; Singh D
    Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry.
    Rikame T; Borde M
    Curr Microbiol; 2022 Apr; 79(6):169. PubMed ID: 35460384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere.
    Saikia R; Sarma RK; Yadav A; Bora TC
    Curr Microbiol; 2011 Feb; 62(2):434-44. PubMed ID: 20689953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invasion and Colonization of Pathogenic
    Bhagat N; Magotra S; Gupta R; Sharma S; Verma S; Verma PK; Ali T; Shree A; Vakhlu J
    J Fungi (Basel); 2022 Nov; 8(12):. PubMed ID: 36547579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment.
    Wang M; Yang X
    PeerJ; 2024; 12():e16992. PubMed ID: 38426138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon.
    Yang W
    Braz J Microbiol; 2019 Jul; 50(3):749-757. PubMed ID: 31111431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular warfare between pathogenic Fusarium oxysporum R1 and host Crocus sativus L. unraveled by dual transcriptomics.
    Bhagat N; Mansotra R; Patel K; Ambardar S; Vakhlu J
    Plant Cell Rep; 2024 Jan; 43(2):42. PubMed ID: 38246927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.