BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34832692)

  • 1. A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks.
    Pechmann S; Mai T; Potschka J; Reiser D; Reichel P; Breiling M; Reichenbach M; Hagelauer A
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research progress in architecture and application of RRAM with computing-in-memory.
    Wang C; Shi G; Qiao F; Lin R; Wu S; Hu Z
    Nanoscale Adv; 2023 Mar; 5(6):1559-1573. PubMed ID: 36926563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
    Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H
    Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications.
    Zahoor F; Azni Zulkifli TZ; Khanday FA
    Nanoscale Res Lett; 2020 Apr; 15(1):90. PubMed ID: 32323059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary Arithmetic Logic Unit Design Utilizing Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM).
    Zahoor F; Hussin FA; Khanday FA; Ahmad MR; Mohd Nawi I
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices.
    Zahari F; Pérez E; Mahadevaiah MK; Kohlstedt H; Wenger C; Ziegler M
    Sci Rep; 2020 Sep; 10(1):14450. PubMed ID: 32879397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge.
    Park J; Kumar A; Zhou Y; Oh S; Kim JH; Shi Y; Jain S; Hota G; Qiu E; Nagle AL; Schuller IK; Schuman CD; Cauwenberghs G; Kuzum D
    Nat Commun; 2024 Apr; 15(1):3492. PubMed ID: 38664381
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Jetty P; Mohanan KU; Jammalamadaka SN
    Nanotechnology; 2023 Apr; 34(26):. PubMed ID: 36975196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FangTianSim: High-Level Cycle-Accurate Resistive Random-Access Memory-Based Multi-Core Spiking Neural Network Processor Simulator.
    Wei J; Wang Z; Li Y; Lu J; Jiang H; An J; Li Y; Gao L; Zhang X; Shi T; Liu Q
    Front Neurosci; 2021; 15():806325. PubMed ID: 35126046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories.
    Baroni A; Glukhov A; Pérez E; Wenger C; Calore E; Schifano SF; Olivo P; Ielmini D; Zambelli C
    Front Neurosci; 2022; 16():932270. PubMed ID: 36017177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition.
    Jiang Y; Kang J; Wang X
    Sci Rep; 2017 Mar; 7():45233. PubMed ID: 28338069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting defective RRAM array as synapses of HTM spatial pooler with boost-factor adjustment scheme for defect-tolerant neuromorphic systems.
    Woo J; Van Nguyen T; Kim JH; Im JP; Im S; Kim Y; Min KS; Moon SE
    Sci Rep; 2020 Jul; 10(1):11703. PubMed ID: 32678139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching.
    Li Y; Fuller EJ; Sugar JD; Yoo S; Ashby DS; Bennett CH; Horton RD; Bartsch MS; Marinella MJ; Lu WD; Talin AA
    Adv Mater; 2020 Nov; 32(45):e2003984. PubMed ID: 32964602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.