These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34832692)

  • 21. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2016; 10():474. PubMed ID: 27857680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Characteristics of Binary Spike-Time-Dependent Plasticity in HfO
    Zhou Z; Liu C; Shen W; Dong Z; Chen Z; Huang P; Liu L; Liu X; Kang J
    Nanoscale Res Lett; 2017 Dec; 12(1):244. PubMed ID: 28381068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Input Logic-in-Memory for Ultra-Low Power Non-Von Neumann Computing.
    Zanotti T; Pavan P; Puglisi FM
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of Inference Accuracy Using Realistic RRAM Devices.
    Mehonic A; Joksas D; Ng WH; Buckwell M; Kenyon AJ
    Front Neurosci; 2019; 13():593. PubMed ID: 31249502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic Layer-Deposited HfAlOx-Based RRAM with Low Operating Voltage for Computing In-Memory Applications.
    He ZY; Wang TY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhang DW
    Nanoscale Res Lett; 2019 Feb; 14(1):51. PubMed ID: 30734146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Status and Prospects of ZnO-Based Resistive Switching Memory Devices.
    Simanjuntak FM; Panda D; Wei KH; Tseng TY
    Nanoscale Res Lett; 2016 Dec; 11(1):368. PubMed ID: 27541816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced regularization for on-chip training using analog and temporary memory weights.
    Singhal R; Saraswat V; Deshmukh S; Subramoney S; Somappa L; Baghini MS; Ganguly U
    Neural Netw; 2023 Aug; 165():1050-1057. PubMed ID: 37478527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices.
    Kingra SK; Parmar V; Chang CC; Hudec B; Hou TH; Suri M
    Sci Rep; 2020 Feb; 10(1):2567. PubMed ID: 32054872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-High-Speed Accelerator Architecture for Convolutional Neural Network Based on Processing-in-Memory Using Resistive Random Access Memory.
    Wang H; Wang J; Hu H; Li G; Hu S; Yu Q; Liu Z; Chen T; Zhou S; Liu Y
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tubular 3D Resistive Random Access Memory Based on Rolled-Up h-BN Tube.
    Hou X; Pan R; Yu Q; Zhang K; Huang G; Mei Y; Zhang DW; Zhou P
    Small; 2019 Feb; 15(5):e1803876. PubMed ID: 30624032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive Synaptic Memory via Lithium Ion Modulation in RRAM Devices.
    Lin CY; Chen J; Chen PH; Chang TC; Wu Y; Eshraghian JK; Moon J; Yoo S; Wang YH; Chen WC; Wang ZY; Huang HC; Li Y; Miao X; Lu WD; Sze SM
    Small; 2020 Oct; 16(42):e2003964. PubMed ID: 32996256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rectifying Resistive Memory Devices as Dynamic Complementary Artificial Synapses.
    Berco D
    Front Neurosci; 2018; 12():755. PubMed ID: 30405338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.
    Zhang D; Zeng L; Cao K; Wang M; Peng S; Zhang Y; Zhang Y; Klein JO; Wang Y; Zhao W
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):828-36. PubMed ID: 27214913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning.
    Li Y; Tang J; Gao B; Yao J; Fan A; Yan B; Yang Y; Xi Y; Li Y; Li J; Sun W; Du Y; Liu Z; Zhang Q; Qiu S; Li Q; Qian H; Wu H
    Nat Commun; 2023 Nov; 14(1):7140. PubMed ID: 37932300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application.
    Shen Z; Zhao C; Qi Y; Xu W; Liu Y; Mitrovic IZ; Yang L; Zhao C
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32717952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Selective Multi-Terminal Memtransistor Crossbar Array for In-Memory Computing.
    Feng X; Li S; Wong SL; Tong S; Chen L; Zhang P; Wang L; Fong X; Chi D; Ang KW
    ACS Nano; 2021 Jan; 15(1):1764-1774. PubMed ID: 33443417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RRAM-based CAM combined with time-domain circuits for hyperdimensional computing.
    Halawani Y; Kilani D; Hassan E; Tesfai H; Saleh H; Mohammad B
    Sci Rep; 2021 Oct; 11(1):19848. PubMed ID: 34615915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device.
    Liang L; Li K; Xiao C; Fan S; Liu J; Zhang W; Xu W; Tong W; Liao J; Zhou Y; Ye B; Xie Y
    J Am Chem Soc; 2015 Mar; 137(8):3102-8. PubMed ID: 25668153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.