These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34832732)
1. Monolayer-Graphene-Based Tunable Absorber in the Near-Infrared. Cao S; Wang Q; Gao X; Zhang S; Hong R; Zhang D Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832732 [TBL] [Abstract][Full Text] [Related]
2. A TM polarization absorber based on a graphene-silver asymmetrical grating structure for near-infrared frequencies. Wang W; Li Y; Chen F; Cheng S; Yang W; Wang B; Yi Z Phys Chem Chem Phys; 2023 Sep; 25(35):23855-23866. PubMed ID: 37641967 [TBL] [Abstract][Full Text] [Related]
3. A tunable ultra-broadband and ultra-high sensitivity far-infrared metamaterial absorber based on VO Feng H; Meng H; Wang G; Liu J; Zhang X; Li M; Yang S; Jia Y; Du H; Gao Y; Gao Y Phys Chem Chem Phys; 2024 May; 26(20):14919-14929. PubMed ID: 38738775 [TBL] [Abstract][Full Text] [Related]
4. A Non-Volatile Tunable Terahertz Metamaterial Absorber Using Graphene Floating Gate. Bai J; Shen W; Shi J; Xu W; Zhang S; Chang S Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33801056 [TBL] [Abstract][Full Text] [Related]
5. Graphene-based dual-band independently tunable infrared absorber. Sun P; You C; Mahigir A; Liu T; Xia F; Kong W; Veronis G; Dowling JP; Dong L; Yun M Nanoscale; 2018 Aug; 10(33):15564-15570. PubMed ID: 30088500 [TBL] [Abstract][Full Text] [Related]
6. A Simple Structure for an Independently Tunable Infrared Absorber Based on a Non-Concentric Graphene Nanodisk. Yu K; Shen P; Zhang W; Xiong X; Zhang J; Liu Y Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329747 [TBL] [Abstract][Full Text] [Related]
7. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene. Lai R; Shi P; Yi Z; Li H; Yi Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576 [TBL] [Abstract][Full Text] [Related]
8. Tunable polarization-independent dual-band coherent perfect absorber based on metal-graphene nanoring structure. Si J; Dong Z; Yu X; Deng X Opt Express; 2018 Aug; 26(17):21768-21777. PubMed ID: 30130878 [TBL] [Abstract][Full Text] [Related]
9. High-Quality Graphene-Based Tunable Absorber Based on Double-Side Coupled-Cavity Effect. Wang Q; Ouyang Z; Lin M; Zheng Y Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835589 [TBL] [Abstract][Full Text] [Related]
10. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. Chen H; Chen Z; Yang H; Wen L; Yi Z; Zhou Z; Dai B; Zhang J; Wu X; Wu P RSC Adv; 2022 Mar; 12(13):7821-7829. PubMed ID: 35424732 [TBL] [Abstract][Full Text] [Related]
11. Graphene ultraviolet ultrahigh-Q perfect absorption for nanoscale optical sensing. Yan Z; Zhu Q; Wan M; Lu X; Pu X; Tang C; Yu L Opt Express; 2020 Mar; 28(5):6095-6101. PubMed ID: 32225866 [TBL] [Abstract][Full Text] [Related]
12. Dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures. Zhao Y; Huang Q; Cai H; Lin X; He H; Ma T; Lu Y Opt Express; 2019 Feb; 27(4):5217-5229. PubMed ID: 30876123 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared absorbers based on the heterostructures of two-dimensional materials. Davoodi F; Granpayeh N Appl Opt; 2018 Feb; 57(6):1358-1366. PubMed ID: 29469834 [TBL] [Abstract][Full Text] [Related]
14. Angle- and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect. Lee S; Tran TQ; Kim M; Heo H; Heo J; Kim S Opt Express; 2015 Dec; 23(26):33350-8. PubMed ID: 26831999 [TBL] [Abstract][Full Text] [Related]
15. A five-band absorber based on graphene metamaterial for terahertz ultrasensing. Jiang W; Chen T Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35016165 [TBL] [Abstract][Full Text] [Related]